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Abstract

Timelines are a formalism to model planning domains where
the temporal aspects are predominant, and have been used in
many real-world applications. Despite their practical success,
a major limitation is the inability to model temporal uncer-
tainty, i.e. the fact that the plan executor cannot decide the
actual duration of some activities.
In this paper we make two key contributions. First, we pro-
pose a comprehensive, semantically well founded framework
that (conservatively) extends with temporal uncertainty the
state of the art timeline approach.
Second, we focus on the problem of producing time-triggered
plans that are robust with respect to temporal uncertainty, un-
der a bounded horizon. In this setting, we present the first
complete algorithm, and we show how it can be made practi-
cal by leveraging the power of Satisfiability Modulo Theories.

Introduction
Timelines are a comprehensive formalism to model plan-
ning domains where the temporal aspects are predominant.
The framework builds on a quantitative extension of Allen’s
temporal operators (Allen 1983; Angelsmark and Jonsson
2000). For example, it is possible to state that a certain ac-
tivity must last no longer than 5 seconds, and must be carried
out during another activity. The key difference with respect
to (Allen 1983) is in the fact that, with timelines, the number
and type of activities is not known a priori — they are the
result of unrolling over time the domain description (simi-
lar to the instantiation of operators into actions in classical
planning).

Timelines have been used in many real-world applica-
tions. The research line pioneered by NASA, that resulted
in the Europa planner (Barreiro et al. 2012), is based on a
timeline framework. APSI is a timeline-based framework
that has been developed in the European Space Agency
(ESA) since 2008 (Donati et al. 2008; Cesta et al. 2009a).
The framework is very expressive, and it has been used to
describe real-world planning and scheduling domains and
problems (Donati et al. 2008; Cesta et al. 2008), and as a
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core for several practical applications (Cesta et al. 2009b;
2010a; 2011).

Despite the practical success of the timeline approach, a
major limitation is the inability to express temporal uncer-
tainty. Temporal uncertainty is needed to model situations
in which some activities have a duration that cannot be con-
trolled by the plan executor. Such phenomenon is perva-
sive in several application domains, including transporta-
tion, production planning, and aerospace. In fact, in 2010
ESA issued an Invitation to Tender aiming at the extension
of the APSI timeline-based framework with uncertainty.

In this paper, we make the following contributions. First,
we propose a comprehensive framework, that (conserva-
tively) extends the state of the art timeline approach with
temporal uncertainty. We provide a semantic foundation to
the strong controllability problem, that is the problem of pro-
ducing time-triggered plans that are robust with respect to
temporal uncertainty. In practice, this is useful to generate
plans that are guaranteed to fulfill the goal under any possi-
ble behavior of the uncertain components of the domain.

Second, we present the first complete algorithm for time-
line planning under temporal uncertainty. The approach is
based on the logical encoding of the problem into the prob-
lem of satisfiability of a first order formula with respect to a
background theory. The approach is made practical by lever-
aging the power of Satisfiability Modulo Theories (Barrett et
al. 2009) (SMT). In addition to the direct encoding, we pro-
pose a lazy algorithm that relies on the incremental use of the
underlying SMT solver. We experimented on various prob-
lems, and the results confirm the potential of the approach.

This paper is structured as follows. In Section we present
some background. In Section we model timelines with un-
certainty; in Section we show how to encode the strong con-
trollability problem into SMT. In Section we compare our
approach with related work, and in Section we experimen-
tally evaluate it. In Section we draw some conclusions, and
outline directions for future research.

Background
Allen’s Algebra. Allen’s algebra is a well known formal-
ism to reason about the temporal properties of a finite set
of activities (Allen 1983). The algebra is defined by 13
operators, representing all the possible relations between a
pair of intervals, by a transitivity table that allows for con-
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straint propagation and by an inverse function. The problem
of checking the temporal consistency of a set of Allen con-
straints is known to be NP-hard (Allen 1983).

Allen’s algebra has been extended in a number of works
to express quantitative information (Angelsmark and Jons-
son 2000; Cheng and Smith 1994; Drakengren and Jonsson
1997; Wetprasit and Sattar 1998; Cesta et al. 2009a). In this
paper, we use the extension proposed in (Cesta et al. 2009a),
where operators are annotated with intervals: for example,
the expression “A contains [10,20] [2,5] B” states that the
interval A contains the interval B, and the start of A precedes
the start of B by no less than 10 and no more than 20 time
units; similarly the end of B precedes the end of A by no
less than 2 and no more than 5 time units. The semantics
of the operators is given in terms of structures describing the
mutual relations between the start/end point of each interval.
Clearly, this quantitative formalism subsumes the qualitative
version: each “classical” Allen operator can be obtained by
setting the quantitative intervals to [0,∞].

In our setting we consider the time to be dense. Time
points are interpreted over real values.

Satisfiability Modulo Theory. Given a first-order formula
ψ in a decidable background theory T , Satisfiability Modulo
Theory (SMT) (Barrett et al. 2009) is the problem of decid-
ing whether there exists a satisfying assignment to the free
variables in ψ.

In this work we concentrate on the theory of Linear Arith-
metic over the Real numbers (LRA). A formula in LRA ob-
tained from atoms by applying Boolean connectives (nega-
tion ¬, conjunction ∧, disjunction ∨), and universal (∀)
and existential (∃) quantification. Atoms are in the form∑
i aixi ./ c where ./∈ {>,<,≤,≥, 6=,=}, every xi is a

real variable and every ai and c is a real constant. We denote
with QF LRA the quantifier-free fragment of LRA.

As an example, consider the QF LRA formula (x ≤
y) ∧ (x + 3 = z) ∨ (z ≥ y) with x, y, z being real
variables. In the theory of real arithmetic, numerical con-
stants are interpreted as the corresponding real numbers, and
+,=, <,>,≤,≥ as the corresponding operations and rela-
tions over R. The formula is satisfiable, and a satisfying
assignment is {x := 5, y := 6, z := 8}.

An SMT solver is a decision procedure which solves the
satisfiability problem for a formula expressed in a decidable
subset of First-Order Logic. Currently, the most efficient
implementations of SMT solvers use the so-called “lazy ap-
proach”, where a SAT solver is tightly integrated with a T -
solver. See (Barrett et al. 2009) for a survey.

Several techniques have been developed for remov-
ing quantifiers from an LRA formula (e.g. Fourier-
Motzkin (Schrijver 1998), Loos-Weispfenning (Loos and
Weispfenning 1993; Monniaux 2008)): they transform an
LRA formula into a QF LRA formula that is logically equiv-
alent modulo the LRA theory. These techniques enable for
the solution of quantified formulae at a cost that is dou-
bly exponential in time and space in the original formula
size (Schrijver 1998; Monniaux 2008; Loos and Weispfen-
ning 1993).
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Figure 1: Running example

It is possible to reduce the consistency problem for quan-
titative Allen’s algebra to SMT(QF LRA). Intuitively, for
each activity, two (start/end) real variables are introduced;
each constraint over two activities is mapped to an SMT for-
mula over the corresponding variables. For example, A be-
fore B by at least 10 time units is expressed as B.start −
A.end ≥ 10. The disjunction in SMT is essential to express
“non-convex” Allen’s constraints.

In the following we will use the following shorthands. Let
V be a finite set {v1, v2, . . . , vn}. We write t ∈ V for the
formula t = v1 ∨ t = v2 ∨ . . .∨ t = vn. Let I be an interval
[l, h). We write t ∈ I for the formula t ≥ l∧t < h. We write
I for the set of all possible intervals. Let I1 = [s1, e1) and
I2 = [s2, e2) be two intervals, we write I1 ⊆ I2 if s1 ≥ s2
and e1 ≤ e2.

Timelines with Uncertainty
Example. Consider a communication device that can send
data packets of two different types to a satellite during the
time period in which the satellite is visible. The visibility
window of the satellite is not controllable by the communi-
cation device and it ranges between 10 and 11 hours, while
the satellite remains hidden in the following 10-12 hours
(also uncontrollably). The device needs 5 hours to send each
packet of data and a transmission has to happen during the
visibility window. Notice that both the satellite and the de-
vice can be in each state more than once. The satellite is
initially hidden, and the device is idle. The goal is to send
one data packet per type. The situation is depicted in Fig-
ure 1.

Syntax. We introduce an abstract notation for timeline-
based domain descriptions. We retain all the features of the
concrete languages used in the applications. Intuitively, the
timeline framework can be thought of as a “sequential ver-
sion” of Allen’s algebra, where the same activity can be in-
stantiated multiple times. The instantiations are obtained by
means of generators.

Definition 1. A generator G is a tuple (V, T, δ) such that V
is a finite set of values, T ⊆ V × V is a transition relation,
δ : V → I is a temporal labeling function.

A generator represents a state variable over values V in



a timeline framework1. The transition relation T is used
to logically describe the evolution of the generator. If
T (vi, vj), then the end of (an instance of) activity vi can
be followed by the start of (an instance of) activity vj . In
our satellite example, the system is composed of two gen-
erators: the Satellite and the Communicator. The Satellite
generator has values {V isible,Hidden}, the transition re-
lation imposes the alternation of V isible and Hidden val-
ues, and the δ function imposes the minimal and maximal
duration of each value (V isible → [10, 11), Hidden →
[10, 12)). The Communicator generator is three-valued
(Idle, Send1, Send2), the transition relation imposes the
automaton shape depicted in Figure 1 and the duration con-
straints are Idle → [1,∞), Send1 → [5, 5) and Send2 →
[5, 5).

In order to express the constraints between different gen-
erators, we introduce the notion of synchronization.

Definition 2. Let Gi = (Vi, Ti, δi) be generators, with
i ∈ {0, . . . , n}. An n-ary synchronization σ is a triple
((G0, v0), {(G1, v1), . . . , (Gn, vn)}, C), such that, for all
i ∈ {0, . . . , n}, vi ∈ Vi, and C is a set of Allen constraints
in the form vh ./ vk, with h, k ∈ {0, . . . , n}.

The synchronizations are based on Allen’s temporal oper-
ators applied to generator values. The interpretation, how-
ever, is quite different from (Allen 1983). For example,
“Send1 during [0,∞) V isible” means that every instance
of Send1 occurs during some instance of V isible; similarly,
“V isible during−1 [0,∞) Send1” means that during every
visibility window some Send1 occurs. Therefore, the alge-
braic properties of (Allen 1983) are not retained here. In
Figure 1, we indicated two synchronizations using dashed
arrows. These synchronizations are used to require that the
packet of data is sent during the visibility window.

A set of generators and a set of synchronizations are suf-
ficient to define a planning domain. For what concerns the
planning problem, we do not distinguish between facts and
goals: we just require an execution that exhibits a set of
(temporally-extended and temporally constrained) facts.

Definition 3. LetG = (V, T, δ) be a generator. A unary fact
is a tuple (G, v, Is, Ie), where v ∈ V and Is, Ie ∈ I. Let f1
and f2 be two unary facts and let ./ be a quantified Allen
operator. A binary fact is a constraint in the form f1 ./ f2.

A unary fact prescribes the existence of a value v in
the execution of G, that starts during Is and ends dur-
ing Ie. A binary fact is useful to impose constraints (e.g.
precedence, containment) between the intervals in the cor-
responding unary facts. In our satellite example, we use
two unary facts to force the initial condition of the sys-
tem: f1 = (Satellite,Hidden, [0, 0], [0,∞)) forces the
satellite to be in Hidden state at 0. Similarly, f2 =
(Communicator, Idle, [0, 0], [0,∞)) constrains the initial
state of the communicator to be idle.

Similarly, to express the goals we introduce g1
= (Communicator, Send1, [0,∞), [0,∞)) and g2 =
(Communicator, Send1, [0,∞), [0,∞)), that require the

1Without loss of generality, we disregard the parametrization
used in some timeline languages.

communicator to be eventually in Send1 state and in Send2
state. If we need to order the goals, prescribing that the
packet 1 must be sent before packet 2, we can impose a bi-
nary fact g1 before[0,∞) g2. Notice that the goals are tem-
porally extended, i.e. they do not simply require to reach a
final condition.

The above definitions characterize timelines in the clas-
sical sense. In order to deal with temporal uncertainty, we
now introduce an annotation to distinguish controllable and
uncontrollable elements.

Definition 4. A CU-annotation for a set of generators G =
{Gi = (Vi, Ti, δi)} is a function χ : G ×

⋃
i Vi → {C, U} ×

{C, U}. A CU-annotation for a set of synchronizations S is
a function χ : S → {C, U}.

With a slight abuse of notation, we overload the χ func-
tion. The U flag identifies an uncontrollable element, there-
fore the flagged time instant is not under the control of the
agent. Instead, the C flag identifies controllable elements.
Consider again the running example. If we flag both the
states of the satellite with (U, U) and all the rest as control-
lable, we are modeling a situation in which the satellite vis-
ibility is not decidable by the communicator, the only possi-
ble assumption is the minimal and maximal durations.

We now define what is a planning problem.

Definition 5. Let G be a generator set, Σ a set of syn-
chronizations over the generators in G, F and R be sets
of unary and binary facts, respectively. Let χ be a CU-
annotation. A timeline controllability problem P is a tuple
(G,Σ,F ,R, χ).

In this work possible solutions are time-triggered plans,
defined as follows.

Definition 6. A time-triggered plan is a (possibly infinite)
sequence (G1, v1, cmd1, t1); (G2, v2, cmd2, t2); . . . where,
for all i ≥ 1, vi is a value for Gi, cmdi ∈ {S, E}, and
ti ≤ ti+1.

Intuitively, at a specific time point, a time triggered plan
may specify one or more start/end commands to be executed
on a specific generator and value. This definition is syntac-
tic; the executability of a time-triggered plan is defined at
the semantic level.

Semantics. In the following we assume that a timeline de-
scription is given. We provide an interpretation of timelines
by means of streams, i.e. possibly infinite sequences of time-
labeled activity instances.

Definition 7. Let G = (V, T, δ) be a generator. A stream S
for G is a (possibly infinite) sequence (v1, d1); (v2, d2); . . .
such that, for all i ≥ 1, vi ∈ V , (vi, vi+1) ∈ T , di ∈ δ(vi).

Given a stream S, we use the following nota-
tion : V alue(S, i) = vi; StartT ime(S, i) =∑i−1
j=1 dj ; EndTime(S, i) = StartT ime(S, i) + di;

Interval(S, i) = (StartT ime(S, i), EndT ime(S, i)).
We can now define the compatibility of a stream with the

problem constraints.



Definition 8. Let G0, . . . , Gn be generators, and let σ =
((G0, v0), {(G1, v1), . . . , (Gn, vn)}, C) be a synchroniza-
tion. For 0 ≤ i ≤ n, let Si be a stream forGi. {S0, . . . , Sn}
fulfills σ iff for all j0 such that (V alue(S0, j0) = v0), there
exist j1, . . . , jn such that for every constraint (vh ./ vk) ∈
C, Interval(Sh, jh) ./ Interval(Sk, jk) holds.

Notice that, in general, n-ary synchronizations, cannot be
expressed in terms of binary synchronizations only. This is
true only in the case where each Allen constraint involves
one value from G0 and one from another Gi. In the case
of constraints between Gi and Gj , with i, j > 0 a binding
between the activities in Gi and Gj is introduced, but the
binding is further constrained by G0.
Definition 9. Let G be a generator, and let S be a
stream for G. S fulfills the unary fact (G, v, Is, Ie) at
i iff V alue(S, i) = v, StartT ime(S, i) ∈ Is and
EndTime(S, i) ∈ Ie.

Definition 10. Let f1 ./ f2 be a binary fact, where fi
def
=

(Gi, vi, Isi , Iei). Let S1 and S2 be streams for G1 and
G2 respectively. S1 and S2 fulfill f1 ./ f2 iff S1 ful-
fills f1 at i1, S2 fulfills f2 at i2, and Interval(S1, i1) ./
Interval(S2, i2).
Definition 11. A time-triggered plan
(G1, v1, cmd1, t1); (G2, v2, cmd2, t2); . . . induces a
stream S on G = (V, T, δ) iff for all i ≥ 1, when
G = Gi, there exists j ≥ 1 such that (1) if cmdi = S
then StartT ime(S, j) = ti, and (2) if cmdi = E then
EndTime(S, j) = ti.
Definition 12. A time triggered plan
(G1, v1, cmd1, t1); (G2, v2, cmd2, t2); . . . obeys a CU-
annotation χ iff for each i ≥ 1, (1) if cmdi = S then
χ(Gi, vi) ∈ {(C, C), (C, U)}, and (2) if cmdi = E then
χ(Gi, vi) ∈ {(C, C), (U, C)}.

Intuitively, this means that each assigned time point is la-
beled as controllable.
Definition 13. Let π be a time-triggered plan, χ a CU-
annotation and G the set of generators controlled by π.
π is complete with respect to χ iff for each G ∈ G,
for each stream S = (v1, d1); (v2, d2); . . . of G induced
by π and for each i: (1) if χ(G, vi) ∈ {(C, C), (C, U)}
then (G, vi, S, StartT ime(S, i)) ∈ π; (2) if χ(G, vi) ∈
{(C, C), (U, C)} then (G, vi, E, EndT ime(S, i)) ∈ π.

In other words, if π is complete, each controllable time
point of an induced stream S is assigned by π.
Definition 14. Given the CU-annotation χ, a stream
(v1, d1); (v2, d2); . . . for generator G = (V, T, δ) is said
to satisfy contingencies of G iff for each i ≥ 1, vi ∈ V ,
(vi, vi+1) ∈ T and if χ(Gi, vi) ∈ {(U, U), (U, C)} then
di ∈ δ(vi).

In other words, a stream satisfies the contingencies of a
generator if it is compatible with the generator constraints
on the uncontrollable values.
Definition 15 (Solution to strong controllability problem).
A time-triggered plan π is a strong solution for P =
(G,Σ,F ,R, χ) iff it obeys and is complete w.r.t χ, and all

the streams induced by π that are compatible with the con-
sistencies of the generators in G and that fulfill the synchro-
nizations labeled as u, also fulfill each generator, the rest of
Σ, F andR.

Intuitively we are searching for a plan that constrains the
execution in such a way that for every possible evolution of
the uncontrollable parts (fulfilling the assumed contingen-
cies), all the problem constraints are satisfied.

In practice, we are interested in finding solutions to a
strong controllability problem within a given temporal hori-
zon H .

Definition 16 (Bounded solution to strong controllability
problem). A finite time-triggered plan π is a strong bounded
solution for P = (G,Σ,F ,R, χ) for a time horizon H ∈
R+ iff the following conditions hold: (1) π obeys and is
complete w.r.t χ; (2) all the streams compatible with π fin-
ish after H; (3) each stream S that is compatible with the
contingencies of the generators in G and that satisfies the
synchronizations labeled as u, also satisfies the generator
constraints, F , R, and the rest of Σ is satisfied for every
interval of S that ends before H .

Note that we chose to impose no constraint on interval
that end after the horizon, but other semantics are possible.
We highlight that searching for a time-triggered plan means
searching for a fixed assignment of controllable decisions in
time. For instance, in the satellite example it is possible to
produce a time triggered plan for sending each packet once
as shown in Figure 2. However, it is not possible to send
more packets, because the uncertainty in the satellite com-
presses the guaranteed visibility window. Consider again
Figure 2, the next guaranteed visibility window of the satel-
lite would be [58, 60) that is too short for sending another
packet.

Bounded Encoding in FOL
We now reduce the problem of finding a solution for a
bounded strong controllability problem to a SMT problem.
Intuitively, we aim at finding a finite sequence of intervals,
that completely covers the time-span between 0 and the hori-
zon H , that fulfill all the problem constraints. Note that
no synchronization constraints are imposed on intervals that
end after the horizon bound. The underlying idea is to log-
ically model a set of bounded streams and to impose the
problem constraints on the streams. If the resulting formula
is satisfiable, it means that a model for the formula codifies
a stream that witnesses a solution for the original problem.

Let H ∈ R+ be the horizon, a generator G = (V, T, δ) is
associated with a maximum number of intervals (assuming
each δ(v) > 0). A coarse upper boundMG is given dividing
H by the minimal duration associated with any value in V :
MG = d H

minv∈V start(δ(v))e.
We use two set of variables for each generator G:

V alueOfG(j) and EndOfG(j), whose interpretation de-
fines the stream for G. V alueOfG(j) gives the value of the
j-th interval, while EndOfG(j) encodes the end time point
of the j-th interval. Thus, for each generator G = (V, T, δ),
we can use MG variables V alueOfG(j) ranging over the



domain V , and MG variables EndOfG(j) of type R+ to
model a bounded stream that is guaranteed to cover the in-
terval [0, H].
EndOfG(j) defines time points in which the stream

changes its value. Unfortunately, whether a time point is
controllable or not cannot be detected statically in gen-
eral. In fact, depending on the discrete path encoded
in the assignments to V alueOfG(j), the j-th time point
can be either controllable or uncontrollable. For this
reason, we have to introduce MG new variables, called
UG(j), that model the uncertain values (analogous to
EndOfG(j)). In order to properly capture the strong con-
trollability of the execution, we consider EndOfG(j −
1) and V alueOfG(j) as existentially-quantified variables,
and UG(j) as universally quantified variables. We indi-
cate with UG the set of all the UG(j) variables. In or-
der to impose the proper constraints on either EndOfG(j)
or UG(j) we have to condition the constraint on the con-
trollability of the j-th interval that is decided at solv-
ing time. Therefore we introduce two macros SG(j, UG)
and EG(j, UG) that encapsulate this conditioning and re-
turn the proper value that encodes the start or the end of
the j-interval respectively. The first formula, SG(j, UG),
is defined as2 ite(j = 0, 0, ite(χ(G,V alueOfG(j)) ∈
{(C, C), (C, U)}, EndOfG(j − 1), UG(j − 1))). Simi-
larly, EG(j, UG) is defined as ite(χ(G,V alueOfG(j)) ∈
{(C, C), (U, C)}, EndOfG(j), UG(j)).

Let UsedG(j) be the predicate defined as EG(j, UG) ≤
H . The encoding is defined as follows. For each generatorG
= (V, T, δ), we define V alueG

def
=

∧MG

j=1 V alueOf
G(j) ∈

V to force the domain of V alueOfG(j) and TransG
def
=∧MG−1

j=1 T (V alueOfG(j), V alueOfG(j+1)) to codify the
transition relation of G.

We split the constraints encoding the interval durations in
two distinct formulae as follows.

ΓG(UG) =
∧MG
j=1((χ(G,V alueOfG(j)) ∈ {(C, U), (U, U)})→
(EG(j, UG)− SG(j, UG) ∈ δ(V alueOfG(j))))

ΨG(UG) =
∧MG
j=1((χ(G,V alueOfG(j)) ∈ {(C, C), (U, C)})→
(EG(j, UG)− SG(j, UG) ∈ δ(V alueOfG(j))))

For every uncontrollable synchronization σ =
((G0, v0), {(G1, v1), . . . , (Gn, vn)}, C) (χ(σ) = U),
we define Γσ(UG0 , . . . , UGn) as follows.∧MG0

j0=1(V alueOfG0(j0) = v0 ∧ UsedG0(j0))→
(
∨MG1
j1=1

(
V alueOfG1(j1) = v1 ∧ UsedG1(j1)

)
∧ . . .

(
∨MGn
jn=1(V alueOfGn(jn) = vn ∧ UsedGn(jn))∧∧
vk./vh∈C

ξ(./, SGk (jk, U
Gk ), EGk (jk, U

Gk ),

SGh(jh, U
Gh), EGh(jh, U

Gh))) . . .)

Where ξ(./, s1, e1, s2, e2) is the LRA encoding of the Allen
constraint I1 ./ I2 with the interval Ii being (si, ei). We
also define Ψσ(UG0 , . . . , UGn) in the very same way for
each controllable synchronization (χ(σ) = C). The for-
mula encoding unary facts is obtained by imposing the ex-
istence of a compatible interval in the considered stream.

2ite(ψ, φ1, φ2) is a shortcut for (ψ → φ1) ∧ (¬ψ → φ2).

Hidden Visible Hidden Visible

Idle Send1 Idle Send2

Satellite

Device

0 10 12 15 20 23 30 35 40

Figure 2: An execution of the satellite example that fulfills
the problem constraints. The striped regions are uncertain:
depending on the actual duration of the intervals the satellite
can be either in Hidden or in Visible state.

For each unary fact f = (G, v, Is, Ie) we define Ψf (UG)

as
∨MG

j=1 Fact(U
G, j) where Fact(UG, j) is UsedG(j) ∧

(V alueOfG(j) = v)∧ SG(j, UG) ∈ Is ∧EG(j, UG) ∈ Ie
For every binary fact requirement r = f1 ./ f2,

where fi = (Gi, vi, Isi , Iei) we define Ψr(U
G1 , UG2)

as
∨MG1
j1=1

∨MG2
j2=1(Fact(UG1 , j1) ∧ Fact(UG2 , j2) ∧ ξ(./

, SG1(j1, U
G1), EG1(j1, U

G1), SG2(j2, U
G2), EG2(j2, U

G2))).
Finally, let Σu be the subset of Σ of the uncontrollable

synchronizations and let Σc be Σ/Σu. The overall encoding
for the problem is:∧

G∈G V alueG ∧
∧
G∈G TransG ∧ ∀U

G0 , . . . , UGn .

((
∧
G∈G ΓG(UG) ∧

∧
σ∈Σu

Γσ(UG0 , . . . , UGn))→
(
∧
G∈G ΨG(UG) ∧

∧
σ∈Σc

Ψσ(UG0 , . . . , UGn)∧∧
f=(G,v,Is,Ie)∈F Ψf (UG)∧∧
r=(G1,v1,Is1 ,Ie1 )./(G2,v2,Is2 ,Ie2 )∈RΨr(U

G1 , UG2))).

The universal quantification captures the “universality” of
the solution: for each possible allocation of the uncontrol-
lables, given by UG0 , . . . , UGn , we impose that the con-
tingent part of the problem implies the requirements. The
encoding admits a model iff there exist a bounded solution
to the original problem and the model can be used to build a
complete time-triggered plan for the original bounded strong
controllability problem. This formula is a first-order quan-
tification over a finite set of real variables. Therefore, it can
be decided by a SMT(LRA) solver equipped with a quanti-
fier elimination procedure.

Related Work
This work is most closely related to two research lines:
timeline-based planning, and temporal problems with uncer-
tainty.

The literature on timeline-based planning is extensive,
starting from the seminal work described in (Muscettola
1993), and including the APSI framework (Cesta et al.
2009a; Cesta, Fratini, and Pecora 2008; Cesta et al. 2009b),
the EUROPA framework (Frank and Jónsson 2003) with its
formalization in (Bernardini 2008), and (Verfaillie, Pralet,
and Lemaı̂tre 2010). The key difference of our work is that
we provide a full formal account of timelines with tempo-
ral uncertainty, while the frameworks mentioned above as-
sume controllable duration of activities. The problem ad-
dressed in this paper, requiring universal quantifications to
model the effect of an “adversarial” environment, is signif-
icantly harder than the “consistency” problem, where quan-
tification over (start and end) time points is only existen-
tial. It is important to emphasize the that problem of finding



flexible timelines (Cesta et al. 2010b; 2010a) is very differ-
ent from the one solved here: timeline flexibility demands
the scheduling of the activities to the executor, but does not
guarantee goal achievement in a temporally uncertain do-
main, with uncontrollable durations. Finally, we mention
that we use a dense-time interpretation: we represent time
points as real variables, while APSI and EUROPA use inte-
gers.

There are various extensions of temporal problems with
uncertainty, starting from (Vidal and Fargier 1999), to
strong (Peintner, Venable, and Yorke-Smith 2007; Cimatti,
Micheli, and Roveri 2012a), weak (Venable et al. 2010;
Cimatti, Micheli, and Roveri 2012b), and dynamic control-
lability (Morris, Muscettola, and Vidal 2001). In temporal
problems, the number of instances of activities is known a
priori. This is a key difference with the work discussed here,
where determining the right type and number of activities is
part of the problem.

IxTeT (Ghallab and Laruelle 1994) is a temporal planning
system that is able to deal with temporal uncertainty. Dif-
ferently from our approach, IxTeT does not produce robust
plans. The approach separates planning and scheduling, by
demanding to the plan executor the on-line solution of the
dynamic controllability of a temporal problem with uncer-
tainty.

For completeness, we also contrast our work with the
(less related) work on planning for durative actions based
on PDDL (Coles et al. 2012; 2009). The first difference is
implicit in the two modeling paradigms – for example, time-
lines can naturally express temporally extended goals. More
importantly, planning for durative actions (Coles et al. 2012;
2009) assumes that the duration of actions is controllable.

Evaluation
Implementation. The approach described in previous sec-
tions was implemented in the first (sound and complete) de-
cision procedure for timelines with uncertainty. We devel-
oped a tool chain that uses an APSI-like syntax for specify-
ing the planning domain and problem, with an extension for
CU-annotations of generator states and synchronizations.

The implementation uses the state-of-the-art MathSAT
SMT solver (Cimatti et al. 2012) as a backend, and a quanti-
fier elimination procedure based on the Loos-Weispfenning
method (Loos and Weispfenning 1993).

The tool implements the encoding described in Section ,
in the following referred to as “Monolithic”. We also im-
plemented an “Incremental” approach, where the incremen-
tality feature of the SMT solver is exploited3. The idea is
to limit the number of considered intervals for a generator
(MG), thus resulting in a smaller and easier formula to de-
cide. If the check returns a plan, then the algorithm can
terminate, otherwise more intervals are considered, until we
reach the MG for each generator. This solution often avoids

3In an incremental setting, a solver instance can be queried for
the satisfiability of a formula and then clauses can be pushed or
popped to obtain another formula that can be decided, possibly re-
cycling parts of the previous search.

Type Problem Monolithic Incremental
Time(s) Memory(Mb) Time(s) Memory(Mb)

Sat
Satellite 6.87 111.5 1.88 31.9

Machinery1 TO TO 360.15 611.5
Meeting MO MO 182.52 1897.0

Unsat
Satellite 7.17 126.2 171.25 147.6

Machinery2 104.86 253.7 113.53 284.4
Meeting 23.12 630.8 105.17 776.9

Table 1: Experimental results.

submitting to the solver the (bigger) formula corresponding
to the whole problem.

Both approaches were optimized by applying a rewriting
similar to the one described in (Cimatti, Micheli, and Roveri
2012a): the formula of the bounded encoding has the form
∀~x.Γ(~x) →

∧
h ψh(~x) and can be equivalently rewritten as∧

h ∀~x.Γ(~x) → ψh(~x). This is often useful, since a large
number of small quantifications may be preferable to a sin-
gle Monolithic one.

Experiments. No competitor approach is available for the
problem that we address. For this reason, we compare the
performances of the Monolithic approach and the Incremen-
tal one.

We considered problems on three different domains, and
ran several (solvable and unsolvable) problems, with vari-
ous time horizons. The results, reported in Table 1, show
that the Incremental approach outperforms the Monolithic
one in all the instances that have a solution. On unsolvable
instances, the Monolithic approach is superior. This is be-
cause the Incremental version has to solve increasingly dif-
ficult problems, and in order to prove the unsatisfiability the
algorithm ends up solving the same problem the Monolithic
approach solved in the first place. In sat-instances, instead,
the Incremental algorithm can early-terminate without hav-
ing to solve the big quantifications needed for the termina-
tion proof. For the lack of space we omit the description of
the used domains and problems. An archive containing the
runnable tool, the tested instances and the relative explana-
tions can be found at https://es.fbk.eu/people/
amicheli/resources/aaai13.

Conclusions
We presented a formal foundation for planning with time-
lines under temporal uncertainty, where the duration of ac-
tions can not be controlled by the executor. We proposed
the first decision procedure that is able to produce time-
triggered plans satisfying the problem constraints regardless
of temporal uncertainty, and implemented it leveraging the
power of SMT solvers.

In the future, we plan to extend the framework to en-
compass resource consumption, to investigate more efficient
quantifier-elimination techniques and other forms of lazy en-
coding, and to address the production of conditional plans
that are robust with respect to temporal uncertainty.
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