
Compiling Away Uncertainty in Strong Temporal Planning with Uncontrollable
Durations∗

Andrea Micheli
FBK and University of Trento

Trento, 38123, Italy
amicheli@fbk.eu

Minh Do and David E. Smith
NASA Ames Research Center
Moffet Field, CA, 94035, USA

{minh.do, david.smith}@nasa.gov

Abstract

Real world temporal planning often involves dealing with
uncertainty about the duration of actions. In this paper, we
describe a sound-and-complete compilation technique for
strong planning that reduces any planning instance with un-
certainty in the duration of actions to a plain temporal plan-
ning problem without uncertainty.
We evaluate our technique by comparing it with a recently-
presented technique for PDDL domains with temporal uncer-
tainty. The experimental results demonstrate the practical ap-
plicability of our approach and show a complementary behav-
ior with respect to the previous techniques. We also demon-
strate the high expressiveness of the translation by applying
it to a significant fragment of the ANML language.

1 Introduction
For most real world planning problems there is uncertainty
about the duration of actions. For example, robots and rovers
have transit times that are highly uncertain due to terrain,
obstacle avoidance, and traction. There is also uncertainty
in the duration of manipulation and communication tasks.
For cars and trucks, transit times are uncertain due to traffic,
road conditions and traffic signals. Any actions to be exe-
cuted by humans are also likely to have uncertain durations.
While there are domains in which the variability on the ac-
tion duration is small enough that it can be ignored, there are
many others where it can be significant, such as transit times
during rush hour.

When there are no time constraints, no required concur-
rency, and plan duration is unimportant, this uncertainty can
often be ignored to find a feasible plan. However, if there
are exogenous events that affect action conditions, or time-
constrained goals, the uncertainty on action durations must
be considered.

In general, temporal conditional planning is very hard,
particularly for actions with duration uncertainty (Younes
and Simmons 2004; Mausam and Weld 2008; Beaudry, Ka-
banza, and Michaud 2010). In practice, most practical plan-
ners take one of two much simpler approaches:
1. Plan using expected action durations, and rely on runtime

replanning and plan flexibility to deal with actions that
take more or less time than expected.
∗A shorter version of this paper appears in IJCAI 2015.

2. Plan using worst case action durations.

The first of these approaches is risky – there is no guar-
antee that the plan will succeed or that runtime replanning
can achieve the goals. The second approach, while gener-
ally more conservative, can also fail if there are time con-
straints or goals with lower bounds (e.g. an action should
not be completed, or a goal should not be completed before
some particular time). For space applications where any fail-
ure during plan execution is potentially very costly, having a
plan that is guaranteed to execute successfully is often criti-
cal.

Recently, Cimatti, Micheli, and Roveri (2015) addressed
these issues by extending PDDL2.1 to explicitly model du-
ration range for actions, and devised a planner that soundly
reasons to produce robust plans. In that work, the authors in-
troduced the “Strong Planning Problem with Temporal Un-
certainty” (SPPTU) as the problem of finding a sequence of
action instances and fixed starting times, such that for ev-
ery possible duration of each action in the plan, the plan is
valid and leads to the goal. In this work, we address the same
problem. However, to make it more relevant to real-world
applications, we consider a much richer language for rep-
resenting temporal planning domains. Specifically, we use
and support: (i) a variable-value language; (ii) durative con-
ditions over arbitrary sub-intervals of actions; (iii) effects at
arbitrary time points during an action, (iv) exogenous events;
(v) disjunctive conditions; and (vi) temporal constraints on
goals. We address the SPPTU by automatically translating a
planning instance with uncertainty on action durations into
a plain temporal planning problem with controllable action
durations. We exploit all the features in the planning lan-
guage to cast the temporal uncertainty in action durations
into discrete uncertainty over the problem variables. This
compilation enables existing off-the-shelf techniques and
tools for temporal planning to find strong plans for SPPTU.

We also present two sets of experimental evaluations of
the compilation technique showing that it can be practically
applied on expressive domains:

• On existing PDDL2.1-extended benchmarks: comparing
against the techniques proposed in (Cimatti, Micheli, and
Roveri 2015)

• On a set of problems modeled in ANML (Smith, Frank,
and Cushing 2008), which enables modeling realistic tem-

This is a pre-print version of the homonymous paper appearing in SPARK 2015.



poral planning domains more naturally.

2 Related Work
Temporal uncertainty is a well-understood concept in
scheduling and has been widely studied (Morris 2006;
e Assis Santana and Williams 2012; Muise, Beck, and McIl-
raith 2013; Cimatti, Micheli, and Roveri 2014). The problem
we address can be seen as a generalization of Strong Con-
trollability for Temporal Problems (Vidal and Fargier 1999;
Peintner, Venable, and Yorke-Smith 2007) to planning rather
than scheduling. Dealing with planning is much harder be-
cause the actions (and thus the time points associated with
them) in a plan are not known a-priori and must be searched
for. Moreover causal relationships between actions are much
more complex.

In temporal planning, duration uncertainty is a known
challenge (Bresina et al. 2002), but few temporal planners
address it explicitly. Some temporal planners (Frank and
Jónsson 2003; Cesta et al. 2009) cope with this issue by
generating flexible temporal plans: instead of fixing the ex-
ecution time of each action, they return a (compactly repre-
sented) set of plans that must be scheduled at run-time by
the plan executor. This approach cannot guarantee plan ex-
ecutability and goal achievement at runtime, because there
is no formal modeling of the boundaries and contingencies
in which the system is going to operate. In addition, this re-
quires that the executor be able to schedule activities at run-
time. In fact, flexibility and controllability are complemen-
tary: controllability provides guarantees with respect to the
modeled uncertainty, while flexibility allows the plan to be
adjusted during execution. In principle, we can use any tem-
poral planner that can generate flexible plans (e.g., VHPOP)
in combination with our compilation to generate a flexible
strong plan.

IxTeT (Ghallab and Laruelle 1994) was the first attempt
to apply the results in temporal reasoning under uncertainty
to planning, but the planner demanded the scheduling of a
Simple Temporal Network with Uncertainty (STNU) (Vidal
and Fargier 1999) by the plan executor. Here, we aim at gen-
erating plans that are guaranteed to work regardless of the
temporal uncertainty. Nonetheless, IxTeT provides dynamic
controllability: it generates a strategy for scheduling the ac-
tions depending on contingent observations. Although dy-
namic plans indeed can work in more situations than strong
plans, they are also complex to generate, understand, and ex-
ecute. When safety is paramount (e.g., space applications),
dynamic plans might not be permitted because they require
run-time computation that is hard to certify and to execute
on-board in real-time. Strong plans are simple to execute and
to check, and are suitable for safety critical systems where
guarantees are needed for the uncertainty and sub-optimality
is an acceptable price to pay.

In contrast to Beaudry, Kabanza, and Michaud (2010) we
are concerned with qualitative uncertainty, meaning that we
are not dealing with probability distributions, but only with
durations that are bounded in convex intervals. In addition,
we aim to guarantee goal achievement, while Beaudry, Ka-
banza, and Michaud maximize the probabilistic expectation.

There is a clear parallel between the problem we are solv-
ing and conformant planning (Ghallab, Nau, and Traverso
2004). In this sense, our work is similar to (Palacios and
Geffner 2009) in which the authors transform conformant
planning into deterministic planning, although the transla-
tion is very different.

The closest work to ours is that of Cimatti, Micheli, and
Roveri (2013, 2015). Cimatti, Micheli, and Roveri (2013)
present a logical characterization of the SPPTU for timelines
with temporal uncertainty, as well as a first-order encoding
of the problem having bounded horizon. Cimatti, Micheli,
and Roveri (2015) cast the same idea in PDDL by extending
state-space temporal planning. In this paper, we generalize
both these frameworks, as we do not impose any bounded
horizon for the problem and we consider a more expressive
language allowing disjunctive preconditions, effects at arbi-
trary time points during actions and durative conditions on
arbitrary sub-intervals. In Section 5 we provide a compari-
son with the techniques proposed in (Cimatti, Micheli, and
Roveri 2015).

3 Modeling Duration Uncertainty
In (Cimatti, Micheli, and Roveri 2015), the authors propose
an extension of PDDL 2.1 to model actions with uncontrol-
lable duration. In this paper we use a richer language that
includes timed-initial-literals (PDDL 2.2), durative goals
(PDDL 3.0), and multi-valued variables (PDDL 3.1). In ad-
dition, we extend the language to allow conditions expressed
over sub-intervals of actions, and effects at arbitrary time
points during an action. These features turn out to be par-
ticularly useful for encoding many problems of interest, and
for encoding our translation.1 We first provide some brief
background on PDDL 2.x and then describe our extensions.

In PDDL 2.2, a planning problem P is represented by a
tuple P =̇ 〈V, I, T,G,A〉 where:

• V is a set of propositions.
• I is the initial state: a complete set of assignments of val-

ues T or F to all propositions in V .
• T is a set of timed-initial-literals, which are tuples 〈[t]f :=
v〉 with f ∈ V and t ∈ R+ is the wall-clock time at which
f will be assigned the Boolean value v.

• G ⊆ V is a goal state: a set of propositions that need to
be true when the plan finishes executing.

• A is a set of durative actions a, each of the form
a =̇ 〈da, Ca, Ea〉 where:

– da ∈ R+ is the action duration. Let sta and eta be the
start and end times of action a then da =̇ eta − sta.

– Ca is the set of conditions; each p ∈ Ca is of the form
〈(stp, etp) f = v〉 where stp and etp indicate the start
and end time points of the condition p and are restricted
to be equal to sta or eta. When stp = etp = sta or
stp = etp = eta then p is an instantaneous at-start or

1To simplify the presentation, we exclude some features of
PDDL that are orthogonal to our approach of handling temporal
uncertainty, such as numeric variables and domain axioms. Our
techniques will work whether or not those features are included.



at-end condition holding at the stp time point. When
stp = sa and etp = ea then p is an overall durative
condition holding in the open interval (stp, etp). f ∈ V
is a proposition with value v = T or v = F over the
specified time period.

– Ea is a set of instantaneous effects, each e ∈ Ea is of
the form 〈[te] f := v〉 where te =̇ sta or te =̇ eta is the
time at which the at-start or at-end effect e occurs.

We allow disjunctive action conditions p of the form
〈(stp, etp)

∨n
i=1 fi = vi〉 in which p is satisfied if at least

one disjunct is satisfied for every time point in (stp, etp).
A plan π of P is a set of tuples 〈ta, a〉, in which actions

a ∈ A are associated to wall-clock start times ta. π is valid
if it is executable in I and achieves all goals in G.

We extend the above features of PDDL 2.2 to include the
following features from PDDL 3.0 and 3.1:

• Multi-valued variables: introduced in PDDL 3.1, allow
variables f in V to have domains Dom(f) with arbitrary
values, instead of just T and F.

• Durative goals: which can be modeled as constraints in
PDDL 3.0, allow each goal g ∈ G to be associated with an
interval [stg, etg] specifying when the goal must be true.
In this setting, we allow the time constant etπ that indi-
cates that the goal must be reached at the end of the plan.

Beyond PDDL. Additionally, the key features in our
framework that go beyond PDDL are: (1) actions can have
uncontrollable durations, and (2) action conditions and ef-
fects are not restricted to action start or end time points.
Specifically:

1. Action duration da is replaced by an interval [dlba , d
ub
a ]

specifying lower- and upper-bound values on action du-
ration: dlba ≤ da ≤ duba . We further divide the set of ac-
tions A into two subsets:

• Controllable actions Ac, where the duration can be
chosen by the planner within the bounds [dlba , d

ub
a ].

• Uncontrollable actions Au, where the duration is not
under the planner’s control.

2. Instead of constraining the times stp and etp of each con-
dition p or the time te of effect e to be either sta or
eta, we allow each of them to take an arbitrary value:
sta + δ or eta − δ, with δ ∈ R+ (the temporal constraint
stp ≤ etp should still be satisfied). We require δ to be
positive and less than or equal to the action minimal du-
ration to prevent effects before the start or after the end
of the action. Analogously to PDDL, If stp = etp the
condition is instantaneous and is required to hold at the
single point stp, otherwise, the condition is required to
hold in the open interval (stp, etp).

A (strong) plan πu for a planning problem with uncer-
tainty Pu is valid iff each instance of πu, obtained by fixing
the duration da for each uncontrollable action a ∈ πu to any
value within [dlba , d

ub
a ], is a valid plan.

Figure 1: A graphical representation of the running example.

Example. A rover, initially at location l1, needs to trans-
mit some science data from location l2 to an orbiter that is
only visible in the time window [14, 30]. The rover can move
from l1 to l2 using an action move (abbreviated µ) that has
uncontrollable duration between 10 and 15 time units. The
data transmission action transmit (abbreviated τ ) takes be-
tween 5 and 8 time units to complete. The goal of the rover is
to transmit the data to the orbiter. Because of the harsh day-
time temperatures at location l2 the rover cannot arrive at l2
until the sun goes behind the mountains at time 15. Figure 1
illustrates this scenario, which we encode as:

V =̇ {pos : {l1, l2}, visible : {T, F}, hot : {T, F}, sent : {T, F}}
I =̇ {pos = l1, visible = F, sent = F, hot = T}
T =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G =̇ {〈[etπ, etπ] sent = T〉}
Ac =̇∅
Au =̇ {〈[10, 15], Cµ, Eµ〉, 〈[5, 8], Cτ , Eτ 〉}
Cµ =̇ {〈(stµ, stµ) pos = l1〉, 〈(etµ, etµ) hot = F〉}
Cτ =̇ {〈(stτ , etτ ) pos = l2〉, 〈(stτ , etτ ) visible = T〉}
Eµ =̇ {〈[etµ] pos := l2〉}
Eτ =̇ {〈[etτ ] sent := T〉}

Figure 2 graphically shows a valid plan:

πu =̇ {〈6,move(l1 → l2)〉, 〈22, transmit〉}

Note that all the actions in πu have uncontrollable duration.

Discussion. In general, finding a strong plan for a prob-
lem with duration uncertainty is different from simply
considering the maximum or the minimum duration for
each action. Consider our rover example and its strong
plan shown in Figure 2. The µ (i.e., move) action must
terminate before the transmit action can start and, at the
same time, µ cannot terminate before time 15 due to the
temperature constraint. If we only consider the lower-bound
on the duration of µ (i.e., planning with dlbµ = 10) then one
valid plan is: πlb =̇ {〈11, µ〉, 〈22, τ〉}. However, because
of the uncertainty in the actual execution duration of µ, it
may actually take 14 time units to arrive at l2. Thus, the
rover would start transmitting at time 22 before it actually
arrives at l2 at time 11 + 14 = 25. Thus, plan πlb is invalid.
Similarly, if we consider only the maximal duration (i.e.,
planning with dubµ = 15), then one possible plan would



move transmit

visible = F visible = T visible = F

hot = T hot = F

time
...

6 16 21 22 271514 30

Figure 2: Graphical execution of πu. Striped regions repre-
sent the uncertainty in the action duration.

be: πub =̇ {〈1, µ〉, 〈22, τ〉}. However, during the actual
execution of µ, it may again take only 11 time units (and
not the planned maximum 15 time units) to arrive at l2. This
would violate the constraint that it should arrive at l2 after
t = 15 to avoid the sun, so πub is also not a valid plan2.

Disjunctive Conditions: In contrast to ordinary temporal
planning, it is not possible to compile away disjunctive
conditions using the action duplication technique (Gazen
and Knoblock 1997), because the set of satisfied disjuncts
in the presence of uncertainty can depend on the contin-
gent execution. For example, consider an action a start-
ing at time t where two Boolean variables p1 and p2 are
F. a has uncontrollable duration in [l, u], an at-start effect
e1=̇〈[sta]p1 := T〉 and two at-end effects e2=̇〈[eta]p1 := F〉
and e3 =̇ 〈[eta]p2 := T〉. An at-start condition p1 ∨p2 of an-
other action b is satisfied anywhere between the start of the
action a and the next deletion of p2. Thus, b can start any-
time within d =̇ (t+ l, t+ u]. However, if we compile away
this disjunctive condition by replacing b with two actions b1
and b2: one with an at-start condition p1 and the other with
an at-start condition p2, then b1 is not executable within d
because there is no time point in d in which we can guar-
antee that p1 = T (because a may take the minimum dura-
tion l and thus the at-end effect e2 will occur at t + l to set
p1 = F). Similarly, we cannot start b2 within d because we
also cannot guarantee that p2 = T at anytime point within
d (because a may take the maximum duration u and thus e3
that set p2 = T will not happen until t + u). Thus, com-
piling away disjunctive conditions leads to incompleteness
when there are uncontrollable durative actions. For this rea-
son it is important to explicitly model disjunctive conditions
in our language.

4 Compilation Technique
In this section, we present our compilation technique, which
can be used to reduce any planning instance P having du-
ration uncertainty into a temporal planning instance P ′ in
which all actions have controllable durations. The transla-
tion guarantees that P is solvable if and only if P ′ is solv-
able. Moreover, given any plan for P ′ we can derive a plan
for P . This approach comes at the cost of duplicating some
of the variables in the domain, but allows for the use of off-
the-shelf temporal planners.

2In some cases it is possible to soundly consider only the max-
imal duration for an action but this special-case optimization is not
sound in general.

The overall intuition behind the translation is the follow-
ing. Consider the transmit (i.e., τ ) action in our example,
and suppose it is scheduled to start at time k. Let v be the
value of sent at time k + 5; since transmit has an at-end
effect 〈[etτ ] sent := T〉, we know that the value of the vari-
able sent during the interval (k + 5, k + 8] will be either
v or T depending on the duration of the action. After time
k + 8 we are sure that the effect took place, and we are sure
of the value of sent until another effect is applied.3 Since
we are not allowed to observe anything at run-time in strong
planning, we need to consider this uncertainty in the value of
sent and produce a plan that works regardless. Since sent
could appear as a condition of another action (or as a goal
condition, as in our example) we must rewrite such condi-
tions to be true only if both T and v are values that satisfy
the condition.

To achieve this, we create an additional variable sentσ
(the shadow variable of sent). This secondary variable
stores the alternative value of sent during uncertainty peri-
ods. When there is no uncertainty in the value of sent, both
sent and sentσ will have the same value. In this way, all the
conditions involving sent can be rewritten in terms of sent
and sentσ to ensure they are satisfied by both the values.

In general, our translation works by rewriting a planning
instance P =̇ 〈V, I, T,G,A〉 into a new planning instance
P ′ =̇ 〈V ′, I ′, T ′, G′, A′〉 that does not contain actions with
uncontrollable duration.

Uncertain Variables. The first step is to identify the set of
variables L ⊆ V that appear as effects of uncontrollable
actions and are executed at a time depending on the end of
the action.

L =̇ {f | a ∈ Au, 〈[t] f := v〉 ∈ Ea, t =̇ eta − δ}

Intuitively, this is the set of variables that can possibly have
uncertain value during plan execution. A variable that is
modified only at times linked to the start of actions or by
timed initial literals, cannot be uncertain as neither the start-
ing time of actions nor the timed initial literals can be uncer-
tain in our model. In our running example, the setL becomes
{sent, pos}.

We now define the set V ′ as the original variables V plus
a shadow variable for each variable appearing in L.

V ′ =̇ V ∪ {fσ | f ∈ L}

We use the pair of variables f and fσ to represent uncer-
tainty: if f = fσ we know that there is no uncertainty in the
value of f , while if f 6= fσ we know that the actual value of
f in the original problem is either f or fσ .

Disjunctive Conditions. At the end of Section 3, we out-
lined the reason why existing approaches of compiling away
disjunctive conditions will not work with uncontrollable ac-
tion durations. In order to rewrite a disjunctive condition
p =̇ 〈(stp, etp)

∨n
i=1 fi = vi〉 we need to ensure that the

3Note that there cannot be another concurrent action in the plan
having an effect on sent during the interval [k+5, k+8] because
this would allow for the possibility of two concurrent effects on the
same variable.



result is satisfied if and only if both the values of f and fσ
for each f ∈ L are satisfying values for p. For this rea-
son, we define an auxiliary function χ(ψ) that takes a single
disjunctive condition in P and returns a set of disjunctive
conditions in P ′.

χ(ψ)=̇


{〈f = v〉} if ψ =̇ 〈f = v〉, f 6∈ L

{〈f = v〉, 〈fσ = v〉} if ψ =̇ 〈f = v〉, f ∈ L

{r ∨ s | r ∈ χ(ψ1), s ∈ χ(ψ2)} if ψ =̇ ψ1 ∨ ψ2

For example, the condition of the τ action, pos = l2, is
translated as the two conditions pos = l2 and posσ = l2.
Analogously, assuming that both f and g are in L, a given
condition (f = T)∨ (g = F) in P is translated by function χ
as the set of conditions {(f = T)∨(g = F), (fσ = T)∨(g =
F), (f = T) ∨ (gσ = F), (fσ = T) ∨ (gσ = F)} in P ′.

Uncertain Temporal Intervals. We also need to identify the
temporal interval in which the value of a given variable can
be uncertain. Given an action a with uncertain duration da
in [l, u], let λ(t) and ν(t) be the earliest and latest possible
times at which an at-end effect at t =̇ eta − δ may happen.
Thus: λ(t)=̇sta+l−δ and ν(t)=̇sta+u−δ. Both functions
are equal to t if t =̇ sta+ δ. For example, consider the effect
e1 =̇〈[etτ ]sent := T〉 of action τ . We know that the duration
of transmit is uncertain in [5, 8], therefore the effect can be
applied between λ(etτ ) =̇ stτ +5 and ν(etτ ) =̇ stτ +8 and
the sent variable has an uncertain value within that interval.

Uncontrollable Actions. For each uncontrollable action
a =̇ 〈[l, u], Ca, Ea〉) in Au in the original model we create a
new action a′ =̇〈[u, u], Ca′ , Ea′〉 inA′

c. Specifically, we first
fix the maximal duration u as the only allowed duration for
a′ and then insert appropriate effects and conditions during
the action to capture the uncertainty.

The effects Ea′ are partitioned in two sets Ela′ and Eua′ to
capture possible values within the uncertain action execution
duration. The conditions Ca′ are also composed of two ele-
ments: the rewritten conditionsCRa′ and the conditions added
to protect the new effects CEa′ (thus C ′ =̇ CRa′ ∪ CEa′ ).

Rewritten conditions CRa′ : are obtained by rewriting existing
action conditions by means of the χ function. The intervals
specifying the duration of the conditions are preserved; since
the action duration is set to its maximum, the intervals of the
conditions are “stretched” to match their maximal duration.

CRa′ =̇ {〈(λ(t1), ν(t2)) α〉 | α ∈ χ(ψ), 〈(t1, t2) ψ〉 ∈ Ca}

For example, the set CRτ for the τ action is: {〈(stτ , stτ +
8) pos = l2〉, 〈(stτ , stτ + 8) posσ = l2〉, 〈(stτ , stτ +
8) visible = T〉}. This requires variables visible, pos and
posσ to be true throughout the execution of τ .

Compiling action effects: The effects of the original action
are duplicated: both the affected variable f and its shadow
fσ are modified, but at different times. We first identify the
earliest and latest possible times at which an effect can hap-
pen due to the duration uncertainty (see earlier discussion on
λ(t) and ν(t)). We then apply the effect on fσ at the earliest
time point λ(t), and at the latest time point ν(t) we re-align

transmit

at l2, visible

sent← T

transmit′

at l2, visible, at l2σ
sentσ

sentσ ← T sent← T

Figure 3: Graphical view of the original transmit action
instance (top) and its compilation (bottom).

f and fσ by also applying the effect on f :

Ela′ =̇ {〈[λ(t)] fσ := v〉 | 〈[t] f := v〉 ∈ Ea}

Eua′ =̇ {〈[ν(t)] f := v〉 | 〈[t] f := v〉 ∈ Ea}
For example, the τ action hasElτ =̇{〈[stτ +5]sentσ := T〉}
and Euτ =̇ {〈[stτ + 8] sent := T〉}.

Additional conditions CEa′ : let t =̇ eta − δ be the time of an
at-end effect that affects the value of f . In order to prevent
other actions from changing the value of f during the inter-
val (λ(t), ν(t)] where the value of f is uncertain, we add a
condition in CEa′ to maintain the value of fσ throughout the
uncertain duration (λ(t), ν(t)].

CEa′ =̇ {〈(λ(t), ν(t)) fσ = v〉, | 〈[t] f := v〉 ∈ Ea} ∪
{〈(ν(t), ν(t)) fσ = v〉 | 〈[t] f := v〉 ∈ Ea}

We are in fact using a left-open interval (λ(t), ν(t)] by spec-
ifying the same condition on the open interval (λ(t), ν(t))
and the single point [ν(t)]. Since the effect on fσ (belong-
ing to Ela′ ) is applied at time λ(t), the condition is sat-
isfied immediately after the effect and we want to avoid
concurrent modifications of either f or fσ until the uncer-
tainty interval ends at ν(t). For example, the τ action has
CEτ ′ =̇ {〈(stτ +5, stτ +8) sentσ = T〉}. Compilation of the
τ action is depicted in Figure 3.

Controllable actions: are much simpler. For each
a =̇ 〈[l, u], Ca, Ea〉 ∈ Ac we introduce a replacement action
a′ =̇ 〈[l, u], Ca′ , Ea′〉 ∈ A′

c, in which: (1) each condition in
C is rewritten to check the values of both the variables and
their shadows, and (2) each effect is applied to a variable and
its shadow, if any.

Ca′ =̇ {〈(λ(t1), ν(t2)) α〉 | α ∈ χ(ψ), 〈(t1, t2) ψ〉 ∈ Ca}

Ea′ =̇ Ea ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ Ea}

Initial state I: is handled by initializing variables and their
corresponding shadow variables in the same way as in the
original problem.

I ′ =̇ I ∪ {fσ = v | f ∈ L, f = v ∈ I}

For example, the initial state of our running problem is the
original initial state plus {sentσ = F, posσ = l1}.

Timed Initial Literals: T ′ are set similarly to the effects.

T ′ =̇ T ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ T}



In our example, we do not have timed initial literals operat-
ing on uncertain variables, thus T =̇ T ′.

Goal conditions:G is augmented to consider both the origi-
nal and shadow variables, without modifying the application
times, since they are fixed and cannot be uncertain.

G′ =̇G ∪ {〈[t1, t2] fσ = v〉 | f ∈ L, 〈[t1, t2] f = v〉 ∈ G}

In our example, the set G′ becomes {〈[etπ, etπ] sent = T〉,
〈[etπ, etπ] sentσ = T〉}.

Example. The compilation for our example problem is:

V ′ =̇ V ∪ {posσ : {l1, l2}, sentσ : {T, F}}
I ′ =̇ I ∪ {posσ = l1, sentσ = F}
T ′ =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G′ =̇ {〈[etπ, etπ] sent = T〉, 〈[etπ, etπ] sentσ = T〉}
A′c =̇ {〈[15, 15], Cµ′ , Eµ′〉, 〈[8, 8], Cτ ′ , Eτ ′〉}
Cµ′ =̇ {〈(stµ, stµ) pos = l1〉, 〈(stµ, stµ) posσ = l1〉,

〈(etµ, etµ) hot = F〉, 〈(stµ + 10, stµ + 10) posσ = l2〉,
〈(stµ + 10, stµ + 15) posσ = l2〉}

Cτ ′ =̇ {〈(stτ , etτ ) pos = l2〉, 〈(stτ , etτ ) posσ = l2〉,
〈(stτ , etτ ) visible = T〉, 〈(stτ + 5, stτ + 8) sentσ = T〉,
〈(stτ + 5, stτ + 5) sentσ = T〉}

Eµ′ =̇ {〈[stµ + 10] posσ := l2〉, 〈[stµ + 15] pos := l2〉}
Eτ ′ =̇ {〈[stτ + 5] sentσ := T〉, 〈[stτ + 8] sent := T〉}

Discussion. This compilation is sound and complete. Thus,
the original problem is solvable if and only if the result-
ing problem is solvable Any plan for the rewritten temporal
planning problem is automatically a strong plan for the orig-
inal problem (with the obvious mapping from the rewritten
to the original actions).

Theorem 1. Let P =̇ 〈V, I, T,G,A〉 be a planning instance
andR=̇〈V ′, I ′, T ′, G′, A′〉 be its translation. P has a strong
plan π if and only if R has a temporal plan σ.

Proof. (Sketch) Let π be a strong plan for P . Let σ be the
plan starting a′ at time t for each a starting at time t in π. σ
is a valid temporal plan for R because:

• It achieves the goal G′ of R: all original goals in G are
achieved by π and by σ in the same way, and the goals
on the shadow variables must be achieved because π is
a strong plan. Given that π achieves the goals regardless
of the concrete durations of the actions, it achieves them
outside of the uncertainty intervals, where the variables
and the shadow variables are aligned.

• Each action a′ is executable in R, because each a ∈ π is
executable in P regardless of the action durations. Thus
the possible uncertainty introduced by the durations is ir-
relevant for the executability of a (all the conditions are
satisfied). In the translated instance R, all the conditions
are also satisfied because the conditions are imposed via
the χ function that only checks that both the variable and
its shadow fulfill the original condition.

• No conflicting effects are possible: the conditions added
in CEa′ prevents any modification of the interested shadow
variables during the uncertainty intervals.

Similarly, let σ be a plan for R. Let π be the plan for P
starting a at time t for each a′ starting at time t in σ. π is a
valid strong temporal plan for P because:

• It achieves the goal G, because σ achieves the goal G′

that is a super-set of G and each translated action has all
effects of the original actions.

• Each action a is executable in P regardless of the action
duration, because each a′ ∈ σ is executable in R and the
conditions in the translated actions are a super-set of the
ones in the original action, due to the χ function.

• No conflicting effects are possible regardless of the un-
certain duration, because each effect at time t can be un-
certain only between λ(t) and ν(t) and we guarantee no
other effect is possible in that interval by means of CEa′ .

The compilation produces a problem that has: (i) at most
twice the number of variables of the original problem, (ii) at
most twice the initial and timed assignments and (iii) exactly
the same number of actions. The only point in which the
compilation might produce exponentially large formulae is
in the application of the χ function, which is exponential in
the number of disjuncts constraining variables appearing in
L. Since this only happens for disjunctive conditions, and
the number of disjuncts is typically small, this is normally
not a serious issue.

5 Implementation and Experiments
We conducted two sets of experiments. In the first, we
compare our approach against the techniques proposed
in (Cimatti, Micheli, and Roveri 2015). This is the only
domain-independent planner that we are aware of that can
find strong plans for PDDL 2.1 problems with uncontrol-
lable durations. For this experiment, we use an extension
to PDDL 2.1 that includes actions with uncontrollable du-
rations (but none of the other extensions that we described
in Section 3 such as preconditions and effects at arbitrary
times, multi-valued variables, timed-initial-literals, or dis-
junctive preconditions).

In the second set of experiments, we show the applica-
bility of our technique on a very expressive fragment of
the ANML language (Smith, Frank, and Cushing 2008) ex-
tended with uncertainty in action durations. Except for ac-
tion duration uncertainty, ANML natively supports all the
other features described in Section 3.

PDDL with duration uncertainty. Cimatti, Micheli, and
Roveri (2015) extended the COLIN planner (Coles et al.
2012) to solve SPPTUs by replacing the STN scheduler
with a solver for strong controllability of STNUs. This
yields a sound but incomplete SPPTU planner. The authors



0 50 100 150 200 250 300

Number of solved instances

C
um

ul
at

iv
e 

tim
e 

(s
ec

)

0.1

1

10

102

103

104

Compilation (Colin)
Compilation (POPF)
DR approach
LAD approach
Virtual Best

●

●

●

●

●

●

●

●

●

●

●

●

●

DR approach

C
om

pi
la

tio
n 

(C
ol

in
)

●●●●● ●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●● ● ● ●● ●● ● ●● ●● ●● ● ● ● ●● ● ●●● ●● ●● ●● ● ●●● ●●●●● ● ● ●● ● ●●● ●● ●●●●● ● ●●● ● ●● ●● ● ●● ●● ●●●● ●● ●●● ● ●●● ● ●●● ●●●● ●●●●● ● ●●● ●●● ● ●●●● ● ● ● ●● ●● ●●
TO
MO

TO M
O

0.1

1

10

60

150

300

600

0.1 1 10 60 150 300 600

Figure 4: Experimental results for the PDDL with duration uncertainty comparison. The left picture shows the cumulative time
plot of the solving time for the PDDL benchmarks. The right picture reports the scatter plot of the running time in seconds for
the compilation approach (solved using the COLIN planner) against the DR approach.

then proposed two techniques to overcome the incomplete-
ness: (1) “Last Achiever Deordering” (LAD) is a sound-
but-incomplete technique that tries to limit the incomplete-
ness by building the partial orderings in STNU using the last
achiever for each condition that needs support; (2) “Disjunc-
tive Reordering” (DR) is a sound-and-complete technique
obtained by considering, at each step, all the possible valid
action reorderings using a disjunctive form of STNU.

We compare against this approach by first compiling away
temporal uncertainties and then using both the COLIN and
POPF planners to solve the compiled instances4. We com-
pared our sound and complete technique against both the
complete DR and the incomplete LAD. We used a timeout
of 600 seconds, a memory limit of 8 GB and the full bench-
mark set of 563 problems described in (Cimatti, Micheli,
and Roveri 2015).

The left plot of Figure 4 reports the cumulative time of
the three techniques and the “Virtual Best” solver, obtained
by picking the best solving technique for each instance. The
right scatter-plot compares our technique (instantiated with
COLIN) with the DR approach. The left plot shows that
the compilation technique cannot solve as many instances
as DR or LAD. However, we note that the “Virtual Best”
solver solves many more problems than both the DR and
LAD. This shows that the techniques are complementary:
problem instances that cannot be solved by LAD or DR are
solved quickly by our compilation, and vice-versa. This sit-
uation is also visible in the scatter plot: there is a clear subdi-

4Our approach allows the use of any PDDL2.1 planner that can
handle required concurrency. Unfortunately, many temporal plan-
ners such as LPG and TemporalFastDownward do not support this,
and therefore cannot find solutions to the problems generated by
our compilation.

vision of the problem instances solved by these two different
planners.

Our investigation indicates that the main factor that hin-
ders the performance of our approach is the “clip-action”
construction (Fox, Long, and Halsey 2004) that is needed to
reduce our compilation to PDDL 2.1. In particular, our com-
pilation generates actions with conditions and effects that
occur at intermediate times. Compiling this to PDDL 2.1 re-
quires three PDDL 2.1 actions for each action in Au: a con-
tainer action, and two actions inside the container action that
are clipped together. This deepens the search and lengthens
the plans for COLIN and POPF.

ANML with duration uncertainty. As described in Sec-
tions 3 and 4, our framework handles many useful fea-
tures beyond PDDL 2.1. Some of these can be represented
in higher levels of PDDL (e.g., multi-valued variables),
some cannot (e.g., arbitrary timed action conditions and ef-
fects). While comparing against current state-of-the-art in
PDDL2.1 shows the feasibility of our approach, it restricts
us to a subset of features that can be handled by our compila-
tion. Moreover, as discussed above, the limitation of PDDL
2.1 adversely impacts the performance of our approach.

To show the full expressive potential of our approach,
we used the Action Notation Modeling Language (ANML)
(Smith, Frank, and Cushing 2008), which can natively
model all those constraints. ANML is a variable-value lan-
guage that allows high-level modeling, complex conditions
and effects, HTN decomposition and timeline-like tempo-
ral constraints. Our only addition to ANML is the capabil-
ity to model uncertain action durations: duration :in
[l, u] where l and u are constant values specifying the
lower and upper bounds on the duration of a. We name our



Planning Instance Controllable Uncontrollable
match 1 0.517 0.626
match 2 0.522 0.637
match 3 0.593 1.115
rovers 1 1.196 1.293
rovers 2 1.497 1.810
rovers 3 1.190 2.009

handover 1 0.800 1.081
handover 2 2.302 4.043
handover 3 2.863 32.484

Table 1: Results of the ANML comparison. The table reports
the solving time in seconds for the two analyzed configura-
tions. The Controllable column reports the runtime for the
instances in which the durations are considered as control-
lable by the planner. The Uncontrollable column reports the
runtime for solving SPPTU using our compilation in combi-
nation with the FAPE planner.

ANML extension: ANuML.
We implemented our compilation approach in an auto-

matic translator that accepts an ANuML planning instance
and produces plain ANML. We then use the FAPE (Dvo-
rak et al. 2014) planner to produce a plan for the compiled
ANML problem instance. To the best of our knowledge no
other approach is able to solve the problems we are dealing
with in ANML.

We considered two domains adapted from the FAPE dis-
tribution namely “rover” and “handover”. The former mod-
els a remote rover for scientific operations, similar to our
running example, while the latter models a situation in
which two robots must synchronize to exchange items. Ad-
ditionally, we model a “match” domain derived from the
“matchcellar” domain used in IPC 2011. For each domain,
we tested with three different configurations: different initial
states, goals, and variable domains.

Table 1 compares the time needed for FAPE to produce
a plan ignoring the temporal uncertainty (i.e. considering
the environment to be completely cooperative) with the time
needed to solve the compiled problem. Although the perfor-
mance of the encoding depends on the planning instance, the
results show that the slowdown is acceptable for the tested
instances. An exception is “handover 3”, in which the trans-
lation shows a significant slowdown. We remark that this
is not a comparison between two equivalent techniques, as
the two columns correspond to results in solving very differ-
ent problems: plain temporal planning vs. strong planning
with temporal uncertainty. Instead, this is an indication of
the slowdown introduced by the translation compared to the
same problem without uncertainty. Even though the results
are preliminary, we can infer that our approach is more than
a theoretical exercise and can be practically applied for tem-
poral planning domains modeled natively in ANML.

6 Future Work
While the preliminary results are promising, we are consid-
ering several possible extensions.

Model simplification: it is sometimes possible to simplify a
strong planning problem with temporal uncertainty by con-
sidering the maximal or minimal duration of an action hav-
ing uncertain duration. As we discussed in Section 3, this
“worst-case” approach is in general unsound; nonetheless,
it is possible to recognize some special cases in which it is
sound and complete. This simplification can be done upfront
and could be beneficial for both our compilation and the ap-
proaches in (Cimatti, Micheli, and Roveri 2015). Precisely
understanding when and how this simplification can be ap-
plied is an open problem, but a preliminary analysis sug-
gests that an action a with uncertain duration [l, u], having
conditions involving variables in VC and effects involving
variables in VE , can be considered as being controllable in
[u, u] (without changing its conditions or effects) if all the
following conditions hold:
• A is mutually exclusive with any other action that has an

effect on a variable in VE ∪ VC .
• No Timed Initial Literal modifies a variable in VE ∪ VC .
• Every action with a condition involving VC is mutually

exclusive with A.
These strict requirements are sufficient to guarantee that the
action can be considered to last for its maximal duration as
it is impossible to impose a “lower-bound” constraint in any
valid execution of the actions.

Increase expressiveness: Even though the formalization
we presented is quite expressive and general, the ANML
language has many features that are not covered. A promi-
nent example is the support of conditional effects, which
cannot be expressed in our language but are possible in both
ANML and PDDL. We note that, analogously to disjunctive
preconditions, the common compilation of conditional
effects is unsound in the presence of temporal uncertainty,
because it transforms a possibly uncontrollable effect into
a controllable decision for the planner. Nonetheless, our
translation (with some modifications) is still applicable
in the presence of conditional effects, but it sacrifices
completeness. The intuitive reason is that we represent
uncertainty as a pair of variables (original and shadow) with
the assumption that the value of the variable in the original
execution is either of the two values. With conditional
effects, it is possible to design models in which the variable
can actually be uncertain between more than two values.

Improve performance: Finally, we would like to study
ways to overcome the disappointing performance of the
compilation into PDDL by hybridizing the “native” DR
and LAD techniques with our approach to exploit their
complementarity. Another possibility is to modify a tempo-
ral planner so that it understands the clip-action construct
and avoids useless search when dealing with the instances
produced by our translation.



Acknowledgements: We would like to thank Jeremy Frank,
Alessandro Cimatti and Paul Morris for suggestions, fruitful
discussion, and feedback on an early version of this paper.
This work was supported by the NASA Automation for Op-
erations (A4O) project.

References
Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning
for concurrent action executions under action duration un-
certainty using dynamically generated bayesian networks.
In Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS).
Bresina, J. L.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D. E.; and Washington, R. 2002. Planning under con-
tinuous time and resource uncertainty: A challenge for AI. In
UAI ’02, Proceedings of the 18th Conference in Uncertainty
in Artificial Intelligence, University of Alberta, Edmonton,
Alberta, Canada, August 1-4, 2002, 77–84.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Rasconi,
R. 2009. The APSI Framework: a Planning and Scheduling
Software Development Environment. In Working Notes of
the ICAPS-09 Application Showcase Program.
Cimatti, A.; Micheli, A.; and Roveri, M. 2013. Timelines
with temporal uncertainty. In AAAI, 195–201.
Cimatti, A.; Micheli, A.; and Roveri, M. 2014. Solving
strong controllability of temporal problems with uncertainty
using SMT. Constraints.
Cimatti, A.; Micheli, A.; and Roveri, M. 2015. Strong tem-
poral planning with uncontrollable durations: a state-space
approach. In AAAI.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. J. Artif.
Intell. Res. (JAIR) 44:1–96.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible anml actor and planner in robotics. In
ICAPS-14 Planning and Robotics Workshop.
e Assis Santana, P. H. R. Q., and Williams, B. C. 2012.
A bucket elimination approach for determining strong con-
trollability of temporal plans with uncontrollable choices.
In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada.
Fox, M.; Long, D.; and Halsey, K. 2004. An investiga-
tion into the expressive power of PDDL2.1. In Proceedings
of the 16th Eureopean Conference on Artificial Intelligence,
ECAI’2004, Valencia, Spain, August 22-27, 2004, 328–342.
Frank, J., and Jónsson, A. 2003. Constraint-based Attribute
and Interval Planning. Constraints 8(4):339–364.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning: 4th European Conference on Planning, ECP’97. New
York: Springer-Verlag.
Ghallab, M., and Laruelle, H. 1994. Representation and
control in ixtet, a temporal planner. In Proceedings of the
Second International Conference on Artificial Intelligence

Planning Systems (AIPS), University of Chicago, Chicago,
Illinois, USA, June 13-15, 1994, 61–67.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Mausam, and Weld, D. S. 2008. Planning with durative
actions in stochastic domains. J. Artif. Intell. Res. (JAIR)
31:33–82.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In Principles and Practice of Con-
straint Programming - CP 2006, 12th International Con-
ference, CP 2006, Nantes, France, September 25-29, 2006,
Proceedings, 375–389.
Muise, C. J.; Beck, J. C.; and McIlraith, S. A. 2013. Flexible
execution of partial order plans with temporal constraints.
In IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
J. Artif. Intell. Res. (JAIR) 35:623–675.
Peintner, B.; Venable, K. B.; and Yorke-Smith, N. 2007.
Strong controllability of disjunctive temporal problems with
uncertainty. In CP, 856–863.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML
language. In ICAPS 2008 - Poster session.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. J. Exp. Theor. Artif. Intell. 11(1):23–45.
Younes, H. L. S., and Simmons, R. G. 2004. Solving gen-
eralized Semi-Markov Decision Processes using continuous
phase-type distributions. In AAAI, 742748.


