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Abstract

Automated temporal planning is the problem of synthesiz-
ing, starting from a model of a system, a course of actions
to achieve a desired goal when temporal constraints, such as
deadlines, are present in the problem. Despite considerable
successes in the literature, scalability is still a severe limita-
tion for existing planners, especially when confronted with
real-world, industrial scenarios.
In this paper, we aim at exploiting recent advances in rein-
forcement learning, for the synthesis of heuristics for tempo-
ral planning. Starting from a set of problems of interest for a
specific domain, we use a customized reinforcement learning
algorithm to construct a value function that is able to estimate
the expected reward for as many problems as possible. We use
a reward schema that captures the semantics of the temporal
planning problem and we show how the value function can
be transformed in a planning heuristic for a semi-symbolic
heuristic search exploration of the planning model. We show
on two case studies how this method can be used to extend
the reach of current temporal planning technology with en-
couraging results.

1 Introduction
Automated temporal planning concerns the synthesis of
strategies to reach a desired goal with a system that is for-
mally specified by providing an initial condition together
with the possible actions that can drive it in presence of tem-
poral constraints. In this context, actions become intervals
(instead of being instantaneous as in classical planning) that
have a duration (possibly subject to metric constraints). Sim-
ilarly, plans are no longer simple sequences of actions, but
they are schedules. Automated temporal planning received
considerable attention in the literature, and the definition
of the standard PDDL 2.1 language (Fox and Long 2003)
fueled the research of effective search-based techniques to
solve the problem (Coles et al. 2010; Eyerich, Mattmüller,
and Röger 2012; Rankooh and Ghassem-Sani 2015).

Despite considerable success stories, scalability is still
a major hindrance for the adoption of automated temporal
planning in real-world industrial scenarios. For example, the
experiments reported in (Micheli and Scala 2019) and, more
recently in (Valentini, Micheli, and Cimatti 2020) show how
existing tools are unable to cope with very small and sim-
ple industrial problems when rich temporal constraints need

to be modeled. From a practical standpoint, in many scenar-
ios one wants to have a planner that is able to quickly solve
problems on the same domain: for this reason, many practi-
tioners resort to domain-dependent planners.

In order to mitigate this issue and retain a domain-
independent framework, we propose to leverage recent ad-
vances in model-free reinforcement learning (RL), in partic-
ular Value Iteration using Neural Networks, to automatically
construct temporal planning heuristics for a specific domain.
Ideally, we want to take a temporal planning domain, ana-
lyze it off-line using RL and produce a heuristic function
that allows a planning technique to extend the coverage of
solved problems in that domain. To the best of our knowl-
edge, no previous work addressed the problem of learning
heuristics for temporal planning.

In this paper, we present a domain-independent learning
and planning framework that, given a planning domain and
a set of training problems (not solution plans), synthesizes
a temporal planning heuristic for problems in the same do-
main. We empirically show how this method outperforms
existing symbolic heuristics on two use-case domains with
rich temporal constraints. Our results emphasize how this
approach truly requires a combination of learning and rea-
soning, because the learned policy alone and the purely-
symbolic planner are incapable of reaching the performance
of the symbolic planner equipped with the learned heuristic.

2 Problem Definition
We start by defining the syntax of temporal planning: we
formalize an abstract syntax adherent to the ANML (Smith,
Frank, and Cushing 2008) fragment supported by our plan-
ner (Valentini, Micheli, and Cimatti 2020) using a lifted rep-
resentation to separate domain and problem specifications.

For the sake of simplicity, we formalize a language that is
un-typed and with Boolean predicates only; our implemen-
tation supports the entire ANML typing system and finite-
and infinite-codomain functions.

Definition 2.1. An atom is a tuple 〈p,~v〉 where p is a predi-
cate with arity n and ~v is a vector of n variables.

In our temporal language specification, conditions and ef-
fects can be declared to happen at any time within the dura-
tion of an action, and conditions can be durative, so they are
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associated with an interval of times (we called this feature
“Intermediate Conditions and Effects”).

Definition 2.2. An effect on atom a at relative time τ is a
tuple 〈τ, a〉 where τ is either START + k or END − k with
k ∈ Q>=0. A condition1 on atom a in the relative interval
[τ1, τ2] is a tuple 〈[τ1, τ2], a〉 where τi is either START + ki
or END − ki with ki ∈ Q>=0.

Then, a planning domain is a set of predicates and actions.

Definition 2.3. A planning domain is a tuple 〈P,A〉 where
P is a finite set of predicates; A is a finite set of actions,
each action a has a minimal (dmina ) and maximal (dmaxa )
duration, a set of parameter variables ~v, a set of conditions
Ca, a set of add effects E+

a and a set of delete effects E−a
(with E+

a ∩E−a = ∅). All the atoms appearing in the defini-
tion of a can only use variables appearing in ~v.

We define a ground atom as an atom where all the vari-
ables are assigned to an object.

Definition 2.4. A ground atom is a tuple 〈a, ~o〉 where
a =̇ 〈p,~v〉 is an atom and ~o is a vector of n objects oi with
n = arity(p).

Finally, a planning problem is composed of a finite set of
objects, an initial state and a goal to reach.

Definition 2.5. A planning problem for a planning domain
〈P,A〉 is a tuple 〈O, I,G〉 where O is a finite set of objects
oi; I and G are sets of ground atoms over predicates in P .

We indicate a planning instance as a pair of a planning
domain D and a problem Pi (〈D, Pi〉).

We do not report the full semantics of temporal plan-
ning; for the sake of this paper it suffices to say that a plan-
ning instance can be grounded and the ground semantics
is the usual one: we want to find a valid simulation of the
ground system starting from the initial state and terminating
in a goal state. This semantics can be found in (Valentini,
Micheli, and Cimatti 2020). Moreover, in this paper we dis-
regard action self-overlapping (Gigante et al. 2020); that is,
we forbid an instance of an ground action to overlap in time
with another instance of the same ground action.

In order to solve a ground instance, TAMER (Valen-
tini, Micheli, and Cimatti 2020) searches an interleaving of
events (also called happenings or time-points) that represent
the discrete changes of state in a plan ensuring that the ab-
stract sequence of events can be lifted to a plan by schedul-
ing the temporal constraints. TAMER represents search states
as follows and performs a search in the space of the possible
reachable states starting from the initial state. The transitions
considered by the planner for a planning problem Pi (called
events and indicated as events(Pi)) are either instantiations
of new actions or expansions of time-points, each indicating
an effect, the starting of a condition or its ending.

Definition 2.6. A search state is a tuple 〈µ, δ, λ, χ, ω〉 s.t.:
• µ records the ground predicates that are true in the state;
• δ is a multiset of ground predicates, representing the ac-
tive durative conditions to be maintained valid;

1We only formalize closed condition intervals; open and semi-
open intervals are supported by our implementation.

Algorithm 1 TAMER search algorithm
1: procedure SEARCH(w)
2: i← GETINIT( ); g(i)← 0; Q← NEWPRIORITYQUEUE( )
3: PUSH(Q, i, h(i))
4: while c← POPMIN(Q) do
5: if |c.λ| = 0 then return GETPLAN(c.χ)
6: else
7: for all s ∈ SUCC(c) do
8: g(s)← g(c) + 1

9: PUSH(Q, s, (1− w)× g(s) + w × h(s))

• λ is a list of lists of time-points. It constitutes the
“agenda” of future commitments to be resolved.
• χ is a Simple Temporal Network (STN) defined over time-
points that stores and checks the metric and precedence tem-
poral constraints;
• ω is the last time-point evaluated in this search branch.

We indicate the set of possible states for a given instance
〈D, Pi〉 as S〈D,Pi〉. The exploration performed by TAMER
is detailed in algorithm 1: SUCC indicates the possible suc-
cessor states of a given state (see (Valentini, Micheli, and
Cimatti 2020) for the details).

For the purpose of this paper, we need to define a set of
problems of interest for a given domain: the objective of
our learning technique will be to automatically synthesize a
heuristic to guide a planner for efficiently solve any instance
in the identified set. We make two assumptions on this set.
First, we require the set to be finite: in principle one could
have an infinite set and a sampler, but some details of our
learning algorithm currently assume a finite set of problems.
Second, we assume the number of objects is bounded: this is
needed because we use a feed-forward neural network that
requires a known input dimension to be constructed. For this
reason, we need to assume a maximum number of objects
that results in a maximum number of ground predicates and
in turn a maximum number of inputs for the neural network.
Definition 2.7. A bounded planning problem set with at
most k objects for a planning domain D =̇ 〈P,A〉 written
PkD is a finite set of planning problems Pi =̇ 〈Oi, Ii, Gi〉 for
D such that each |Oi| ≤ k.

In essence, our objective consists in synthesizing a heuris-
tic function that can guide the search of TAMER. The heuris-
tic takes in input a search state and the description of the
problem being solved (i.e. it takes the state of the search,
the goal formulation and the set of objects, the initial state is
ignored).
Definition 2.8. The optimal distance heuristic for a
bounded planning problem set PkD is a function

h∗PkD
:
(⋃

Pi∈PkD
S〈D,Pi〉

)
× PkD → R

s.t. for each Pi ∈ PkD and each state s ∈ S〈D,Pi〉,
d =̇ h∗(s, Pi) is the minimum number for which SUCCd(s)
is a goal state.

The aim of this paper is to automatically learn an approx-
imation of h∗ given a temporal planning domain and a train-
ing bounded planning problem set.



3 Planning Heuristics as Reinforcement
Learning

In order to learn an approximation of h∗, we first cast the
learning problem as a model-free Reinforcement Learning
(RL) problem, in which an instance is non-deterministically
picked from the set PkD without the agent knowing about
the choice and then an episodic RL algorithm is started to
synthesize a value function.

We start by defining the Markov Decision Process (MDP)
over which we will run our RL algorithm.
Definition 3.1. A Markov Decision Process (MDP) is a tu-
pleM=̇〈S,A, T,R, s0〉 where S is a set of states,A is a set
of actions, T : S ×A→ p(S) is the transition function that
given a state and an action returns a probability distribution
for the successor state,R : S×A×S → R is the immediate
reward function and s0 is the initial state.

In RL, we want to construct (an estimation of) the optimal
value function for an MDPM. We assume to interact with
the environment through a policy π : S → A that selects
the action to be applied in each state. After specifying an
action at in state st, the environment returns a state st+1 ∼
T (st, at) and the reward rt=̇R(st, at, st+1). The goal of RL
is to find the policy yielding the maximal cumulative reward
discounted by γ, defined below.

Let the state-action value of a policy π be as follows.

QπM(s, a) =̇ Eπ

[ ∞∑
i=0

γirt+i | st = s, at = a

]
The value function is given by: V πM(s) =̇ E [QM(s, π(s))].
The objective of RL is to find the optimal policy
π∗(s) =̇ arg maxπ QM(s, π(s)). Moreover, in this paper,
we are interested in computing the optimal value function
(V ∗M =̇ V π

∗

M ) for extracting heuristic estimates.

Definition 3.2. Given a bounded planning problem set PkD,
its MDP encodingMPkD is the MDP 〈S,A, T,R,`〉 where:
• S =̇ {`} ∪

⋃
Pi∈PkD

〈S〈D,Pi〉, Pi〉;
• A =̇ {ξ} ∪

⋃
Pi∈PkD

events(〈D, Pi〉);

• T (s, a) =̇

{
{〈IPi , 1

|PkD|
〉 | Pi ∈ PkD} if s =`, a = ξ

{〈a[s], 1〉} if s 6=`
where IPi indicates the initial search state of problem Pi and
a[s] indicates the (unique) successor state of s using action
a. Here, we encoded the successor states using discrete uni-
form probability distributions (we wrote pairs of successor
states with the associated probability).

• R(s, a, s′) =̇


1 if s′ = 〈si, 〈O, I,G〉〉 and si |= G

−1 if 6 ∃b. s′′ = b[s′]

0 otherwise.

Intuitively, we are defining a MDP in which a first, prob-
abilistic transition is used to uniformly select a problem Pi
to be solved from the set PkD; such a transition drives the
MDP in a state where one problem to be solved is identified
and such a problem is in its initial state IPi . From this state
on, the MDP is fully deterministic and the search space is

`

〈IP2
, P2〉〈IP1

, P1〉 〈IP3
, P3〉

S〈D,P1〉 S〈D,P3〉

· · ·

〈sg, P2〉

0 ξ

0 α1

1 αg

Figure 1: The state space and rewards ofMPkD .

homomorphic to the planning space for problem Pi (that is,
all transitions are deterministic and the successor function
changes the first element of the state tuple according to the
successor function of the planning problem). Note that since
we disallowed action self-overlapping, the decision to take
a certain event is unambiguous as there can be at most one
action instance running at each time. The reward of the en-
coding MDP is shaped to give a 1 when the system is in a
state over problem Pi that satisfy the problem goals, a−1 in
dead-ends and 0 everywhere else. This makes the maximal
possible cumulative reward to be 1 assuming that after the
goal is reached the planning successor function deadlocks.
Figure 1 depicts the encoding MDP state space and rewards.

Note that the resulting MDP is a faithful representation of
the set of planning instances we want to solve, no abstrac-
tion is taken. If we could solve this MDP, we would be able
to solve all the planning instances with the resulting policy
without search. At this point, we can introduce the main the-
orem summarizing the basic intuition of this work: we can
transform the optimal value function for the MDP into the
optimal heuristic for all the planning problems.

Theorem 3.1. For a bounded planning problem set PkD the
following equation holds.

h∗PkD
(s) =

{
logγ(V ∗MPkD

(s)) if V ∗MPkD
(s) > 0

∞ otherwise

Proof. (Sketch) The MDPMPkD is deterministic except for
the first action ξ starting from state ` that is however not
needed for the heuristic since ` is not a search state of any
problem. We are therefore interested only in the value of the
other states that is unaffected by action ξ since our MDP is
a tree.

On a deterministic system with the reward shape ofMPkD ,
the optimal policy is the policy reaching a goal state in the
minimum number of steps. Let 〈s0, · · · , sg〉 be the optimal
path from state s0 to the nearest state satisfying a goal sg .
The discounted reward in si clearly is V ∗MPkD

(si) = γg−i,

and the distance to the goal is h∗PkD
(si) = g − i. If a state

s cannnot reach any goal, then V ∗MPkD
(s) <= 0. Hence, we

can retrieve the distance from the discounted reward as per
the theorem statement.



Algorithm 2 Vectorization of an STN χ

1: procedure STN2VECTOR(χ)
2: ~r ← 〈0 for all actions ai〉; τ ← GETMINMAKESPANSOLUTION(χ)
3: lastSafe← 0 . A “safe” state is a state where no action is running
4: balance← 0 . The difference between the started and terminated actions
5: for all time points tp sorted by τ [tp] do
6: if tp is a starting of an action then balance← balance+ 1

7: else if tp is the termination of an action then balance← balance− 1

8: if balance = 0 then
9: ~r ← 〈0 for all actions ai〉

10: lastSafe← τ [tp]

11: else
12: ~r[action(tp)]← τ [tp]− lastSafe
13: if tp = ω then break . ω is the last scheduled time-point

14: return ~r

4 Reinforcement Learning Algorithm
In this section, we detail a dedicated RL algorithm derived
from classical Value Iteration that uses a Neural Network to
estimate the optimal value function V ∗MPkD

. The overarching

idea is to use RL to estimate V ∗MPkD
and from that estima-

tion, derive an estimation of h∗PkD
.

Problem scaling and vector representation. The first in-
gredient needed for our algorithm is to create a uniform vec-
tor representation of the MDP state. To do so, we first need
to scale the state representation so that all the problems in
PkD can be represented uniformly despite the fact that the
number of actions and fluents can be different from one an-
other. To overcome this issue, we exploit the bound k on the
number of objects. For each object oi, we introduce a fresh
Boolean constant2 o∃i that is set to true if the object oi exists
in an instance. In this way, all the instances can be repre-
sented uniformly by considering all the possible k objects,
by adding a precondition o∃i to each action where oi appears
and by setting the initial value of all predicates depending on
a non-existing oi to false. This simple transformation, essen-
tially scales any problem in PkD to a problem with exactly
k objects and a fixed number of actions, that has the same
plans of the original problem.

At this point, we are left with a set of problems that can
be grounded, resulting in a consistent number of fluents. The
neural network we will use to represent the RL policy re-
quires a vector representation of a state of the MDPMPkD .
Given a search state 〈µ, δ, λ, χ, ω〉 and a problem Pi, we de-
fine the vectorization of the MPD state as follows. First, we
vectorize the predicate values (i.e. the µ part of the state),
we pick a fixed ordering for the ground predicates of the
biggest possible problem in PkD. Note that the cardinality of
the ground states is exactly kx with x=̇

∑
p∈P arity(p). We

set the input vector value to 1 (resp. 0) if the corresponding
ground predicate is true (resp. false). The second part of the
vector is a representation of the status of the events (i.e. the
λ). For each possible ground action we have a vector ele-
ment set to the size of the corresponding list of time-points

2A constant is a fluent that is assigned in the initial state and
never changed. ANML explicitly supports constants.

Fluents

Actions

Constants

Goals

Times

5x100 neurons (ReLU)

100 neurons
(ReLU)

1 neuron
(SoftSign)

Figure 2: The neural network architecture.

in λ or to 0 if the action is not started in the current state.
The third part of the input vector contains the constants of
the problem, i.e. the fluents that are never changed by ef-
fects. Constants are encoded as normal fluents. The fourth
part of the vector encodes the goals. For each fluent we have
an entry that is either set to the desired goal value of the
predicate/fluent (using the same encoding of the fluents sec-
tion) or to −1 to indicate that we do not care for this value
in this problem. The fifth and final part of the input vector
encodes the temporal part of the state and can be seen as a
summary of the STN χ. Since the STN grows while plan-
ning search unfolds, we need a way to compress as much
information as possible in form of a fixed-size vector. We
use a simple encoding that captures the time passed in the
minimal-makespan solution of the current STN χ since a
running action has been started. This is formally reported in
algorithm 2. The final vector for a state s (indicated as ~s)
is the concatenation in a single, linear vector of all the five
vector sections above.

Neural Network. Given the vectorization of a state, the
neural network architecture we use is depicted in figure 2.
We split the input vector into the five “sections” described
above. For each of them, we have a dense layer with out-
put size 100 and ReLU activation function. In this way, we
obtain a first hidden layer of 500 neurons. Then, we have a
second layer with output size 100 and ReLU activation func-
tion. Finally, we compute the output of the network using
a single neuron densely connected with the second hidden
layer that uses a softsign (y = x

1+|x| ) activation function.
The neural network will be trained to approximate the op-

timal value function V ∗MPkD
. Note that the expected reward

along any path must be in the range [−1, 1] because of the
reward shape of MPkD , hence the use of the softsign func-
tion to compress the values in the admissible range. To train
the neural network, we use an Adam optimizer and the Mean
Squared Error (MSE) loss function.

Learning Algorithm. The full RL algorithm scheme
is reported in algorithm 3. The algorithm main function



Algorithm 3 Reinforcement Learning Algorithm
1: procedure RL2PLANHEURISTIC(tis,Nepisodes)
2: Vnn ←INITNN( ) . Creates NN with the described architecture
3: mem←LIST( ) . The algorithm experience memory
4: i2s← {i→ 0 | i ∈ tis} . maps i to # of times i was solved
5: for i ∈ 1, . . . , Nepisodes do
6: 〈s, goals〉 = inst←PICKKEYINVPROPORTIONALLYTOVALUE(i2s)
7: 〈done, solved〉 ← 〈False, False〉
8: π ← 〈s〉
9: while not done do

10: ε← εmax × e
(
ln(εmin/εmax)
Nepisodes

×i)
. Decay εmax → εmin

11: if RANDOM( )< ε then .With probability ε
12: α←SELECTACTIONUSINGHEURISTIC(s)
13: else
14: α←SELECTACTIONUSINGPOLICY(Vnn, s)

15: 〈s′, done, ρ〉 ←DOSTEP(π, s, α, inst) . Simulate α move
16: APPEND(mem, 〈s, ρ〉)
17: if ρ[α] = 1 then
18: solved← True

19: APPEND(π, 〈s′〉)
20: s← s′

21: Vnn ←REPLAY(Vnn,mem) . Do a learning step
22: if solved then
23: i2s[inst]← i2s[inst] + 1 . Update solved # count for inst

24: return Vnn

25: procedure PICKKEYINVPROPORTIONALLYTOVALUE(b)
26: V ← {v | i→ v ∈ b} . Get the values of the map b
27: m←CEIL(1.1×MAX(V )) . Allow a 10% slack
28: t← m× |b| − (

∑
v∈V v) . Factor to narmalize probabilities

29: perc← {i→ m−v
t | i→ v ∈ b} . Probability to pick each element i

30: return RANDOMSELECTIONBASEDONPERCENTAGE(perc)

31: procedure SELECTACTIONUSINGHEURISTIC(s)
32: h←EMPTYMAP( ) . A map from successor states to their heuristic values
33: for all α ∈GETAPPLICABLEEVENTS(s) do
34: s′ ←SIMULATEACTIONAPPLY(s, α)
35: h[α] =hadd(s′)

36: return PICKKEYINVPROPORTIONALLYTOVALUE(h)

37: procedure SELECTACTIONUSINGPOLICY(Vnn, s)
38: app ← GETAPPLICABLEEVENTS(s)
39: ns← {α→ ~s′ | s′ = SIMULATEACTIONAPPLY(s, α), α ∈ app}
40: return argmaxα∈app Vnn(ns[α])

41: procedure DOSTEP(π, s, α, inst)
42: ρ← {β → GETREWARD(π, s, β, inst) | β ∈ GAinst}
43: s′ ←SIMULATEACTIONAPPLY(s, α)
44: done← (ρ[α] = 1) or |π| ≥ GETMAXDEPTH( )
45: return 〈s′, done, ρ〉

46: procedure REPLAY(net,mem)
47: batch←SAMPLE(mem) . Pick elements from memory to learn from
48: x← 〈~s | 〈s, ρ〉 ∈ batch〉; y ←EMPTYLIST( )
49: for all 〈s, ρ〉 ∈ batch do
50: app ← GETAPPLICABLEEVENTS(s)
51: ns← {α→ ~s′ | s′ = SIMULATEACTIONAPPLY(s, α), α ∈ app}
52: ys ← max(α→r∈ρ)(r + γ × net(ns[α])) . Update equation
53: APPEND(y, MAX(ys))

54: net←TRAINBATCH(net, x, y) . Backpropagation learning
55: return net

56: procedure GETREWARD(π, s, α, inst)
57: s′ ←SIMULATEACTIONAPPLY(s, α)
58: if s′ |= goals then return 1
59: else if GETAPPLICABLEEVENTS(s′) = ∅ then return -1
60: else . c counts the sub-goals achieved for the first time by α
61: c← |{g | g ∈ GOALS(inst), s′ |= g, ∀s′′ ∈ π. s′′ 6|= g}|
62: return c

|goals| × 10−5

RL2PLANHEURISTIC takes a set of training ground in-
stances tis and a number of episodes to run for Nepisodes;
its goal is to evolve a value function represented as a neural
network Vnn that approximates the optimal value function.
The experience is collected in a finite-size memory mem
that caches pairs 〈s, ρ〉; where s is a state and ρ is a map-
ping of all the applicable events in s to their immediate re-
ward. Differently from a standard RL algorithm, we manip-
ulate the probability of selecting a specific instance among
the ones in the training set by favoring the ones that have
been solved (i.e. that reached a reward of 1) less often. This
amounts to dynamically adapting the probability distribu-
tion of the ξ transition in the MDP MPkD . Concretely, we
record for each planning instance, how many time it has been
solved in the i2s map and we use the PICKKEYINVPRO-
PORTIONALLYTOVALUE function to select an instance for
each episode. This function essentially computes the his-
togram of the solving times for each instance and picks an
instance proportionally to the inverse of this histogram aug-
mented by 10% to allow a non-zero probability of select-
ing each instance. This manipulation of the probabilities is
used to focus the learning on instances that have been solved
less often and are therefore likely to be more difficult. This
is needed because of the nature of the planning problems:
some might have short, simple plans while other can be hard;
in the training set both these cases co-exist and we want to
obtain a flexible policy rather than a policy highly optimized
for the simple cases.

We use an exponential epsilon-decay strategy to balance
between random exploration and policy exploitation, but we
exploit the planning heuristic (hadd in our case) to skew
the probabilities among the possible events. This is done in
the SELECTACTIONUSINGHEURISTIC function that re-uses
the PICKKEYINVPROPORTIONALLYTOVALUE function to
randomly pick an action with a probability inversely propor-
tional to the heuristic value3.

The trajectory simulation is standard and uses the TAMER
planning engine as a simulator. In the memory mem, we
store for each state in the trajectory the reward of each pos-
sible successor state. We forcibly bound the length of the
traces to a maximum depth given by the GETMAXDEPTH
function: we want to avoid the exploration of very long (or
even infinite) paths, in fact, by allowing an arbitrary num-
ber of steps we might get trapped in loops yielding 0 reward
and never finish an episode. In the following, we indicate the
maximum depth used to bound the paths as ∆RL.

We use a reward function that is slightly adjusted with
respect to the one presented in definition 3.2: in particular,
we grant a small (10−5 in total) reward for the sub-goals (a
sub-goal is an element of G) achieved for the first time in
a trace and we give 0 reward for traces that reach the max-
imum depth. This is done by the GETREWARDFUNCTION
that analyzes the trace and checks, for each sub-goal, if it is
achieved for the first time or not. Note that this change has
a small numerical impact on the expected reward and hence
on theorem 3.1, but we picked a number that is small enough

3Since the heuristic estimates the distance to the goal, we prefer
events leading to successor states having a small heuristic value.



to be practically negligible while giving useful intermediate
reward signals.

The learning algorithm is then a standard value itera-
tion with finite memory using the neural network Vnn; the
pseudo-code is reported in function REPLAY. The function
takes advantage of the determinism of the transitions in each
ground planning instance. In fact, by removing the ξ tran-
sition from MDP MPkD , the state space of each instance
is fully deterministic and tree-shaped. For this reason, we
omitted the learning rate (by implicitly setting it to 1) and
we need no expectation operator on the outcome of α. The
value iteration update rule (line 52) simply collapses to:

Vi+1(s)← max
α

(R(s, α, s′) + γ × Vi(s′))

where α ranges over the applicable events in s and s′ is the
successor state of s obtained by applying α.
Planning Algorithm. The output of the learning algorithm
is a policy that estimates the reward forMPkD . We use this
policy as a heuristic function in our planning algorithm ac-
cording to theorem 3.1 with some practical adjustments to
take into account the maximum exploration depth (∆RL) we
fixed for the algorithm.

hnn(s)=̇


min(logγ(Vnn(~s)),∆h) if Vnn(~s) > 0

∆h if Vnn(~s) = 0

2∆h −min(logγ(−Vnn(~s)),∆h) otherwise

Where ∆h ≥ ∆RL. Intuitively, we exploit theorem 3.1 when
Vnn(~s) > 0, but we clip the logarithm output to the maxi-
mum depth ∆h because the RL exploration was limited to
a depth of ∆RL. Note that the output of Vnn is constrained
between−1 and 1 excluded, so the logarithm in the first case
is guaranteed to be positive (because γ < 1). Moreover, if
the neural network returns 0, we return ∆h as heuristic value
and if it is negative (due to the dead-ends), we return a value
that is between ∆h and 2∆h. Note that this heuristic never
returns∞, as we cannot formally guarantee that a state is a
dead-end (while hadd can sometimes determine that a state
shall be pruned). Therefore, we use the range of number be-
tween ∆h and 2∆h to give informative results. The ∆h con-
stant used in this heuristic does not need to be equal to the
one (∆RL) used in the RL algorithm, we just require that
∆h ≥ ∆RL. This consideration is important because empir-
ically, we discovered that using a larger value for ∆h yields
better results. This is probably due to the “flattening” of the
heuristic value due to the min operators in the heuristic: the
smaller ∆h, the more values of hnn(s) get compressed to
∆h, losing the possibility of discriminating among them.

5 Related Work
Several works aimed at combining learning with planning.

Macro-actions (Coles and Smith 2007; Botea et al. 2005)
consist in the combination of several actions in a single
one: creating “shortcuts” in the search-space. Case-based
planning (Spalazzi 2001; Bonisoli et al. 2015) constructs a
database of plans for a specific domain that can be used as a
source of learned knowledge to efficiently solve new prob-
lems. Some authors (Asai and Fukunaga 2018) also focused
on the problem of learning symbolic models from data.

The learning of heuristics to speed up the planner is the
most related topic. To the best of our knowledge, no work
currently addresses the problem of learning heuristics for
temporal planning: only few papers deal with this problem
in the case of classical planning. In their seminal work, de
la Rosa, Olaya, and Borrajo use a case-based database to
inform heuristics (de la Rosa, Olaya, and Borrajo 2007).
Yoon, Fern, and Givan used machine-learning techniques
to learn control policies that are then exploited in a classi-
cal, heuristic-search planner (Yoon, Fern, and Givan 2008).
Another approach in this area is (Arfaee, Zilles, and Holte
2011), where the authors use the search spaces generated by
employing one, weak classical planning heuristic to learn
an incrementally better one. (Choudhury et al. 2018) aims at
learning heuristic functions for robotic planning by imitation
of a oracle used for training. (Virseda, Borrajo, and Alcazar
2013) uses machine learning to compose a fixed set of clas-
sical planning heuristics into one, single heuristic value for
cost-based planning. Recently, (Ferber, Helmert, and Hoff-
mann 2020) showed a comprehensive hyper-parameter ex-
perimentation for the case of supervised-learning of a classi-
cal planning heuristic represented as a neural-network. Dif-
ferently from all these previous works, this paper tackles ex-
pressive temporal planning with intermediate conditions and
effects and provides a fully-automated technique to learn
heuristics from simulations via RL. Moreover, we do not fo-
cus on a single instance or a group of instances with the same
structure, but we allow for arbitrary sets of instances sharing
the same domain and having a known upper-bound on the
number of objects.

Also in the context of classical planning, some approaches
aimed at learning domain-specific planners. (Spector 1994)
used genetic programming to automatically code a planner
for a specific domain. (Khardon 1999) learned decision-lists
to guide the planner, but both these approaches were un-
able to reliably produce good results. DISTILL (Winner and
Veloso 2003) works by synthesizing the source code of a
planner that can solve each of the example problems and
then code-merging operators are used to generalize the code.
Another approach was developed in the CLAY framework
(Srivastava and Kambhampati 1998), where automatic de-
ductive program synthesis was used to construct domain-
dependent planners. In this paper, we contribute to this line
by providing an automated technique to automatically learn
domain-dependent temporal planning heuristics: this is not
the same as producing the code of a domain-dependent plan-
ner, but a planner equipped with our heuristic becomes a
specialized planner for a certain domain.

Another related field is generalized planning, where the
objective is the synthesis of plans (in forms of programs or
automata) that work for a set of instances sharing some char-
acteristics (Celorrio, Aguas, and Jonsson 2019). A recent
and relevant advancement in this area is (Toyer et al. 2018)
presenting “Action Schema Networks” (ASN). In this work,
a generalized policy is extracted by means of deep learning
from a set of problem instances on the same domain and a
planning-specific transfer-learning technique is used to gen-
eralize and exploit the policy for new problems. In this pa-
per, we are not tackling generalized planning: we maintain



(and rely on) reasoning capabilities in the planner, so instead
of generating a plan that works for all the instances, we learn
a heuristic to be informative in a certain domain.

Finally, some works used external control knowledge to
guide planners (Doherty and Kvarnström 2001; Bacchus and
Kabanza 2000). In temporal planning, (Micheli and Scala
2019) focuses on temporal control knowledge to express
complex problem constraints, but no learning is present.

6 Experimental Evaluation
In this section we experimentally evaluate the merits of our
approach by both comparing the planner equipped with the
learned heuristic against baseline techniques and also by as-
sessing the sensitivity of our learning approach to the differ-
ent kinds of input described in section 4.

We consider two benchmark planning domains. The first
one is the MAJSP domain used in (Micheli and Scala 2019)
and (Valentini, Micheli, and Cimatti 2020); the domain con-
sists of a job-shop scheduling problem in which a fleet of
moving agents transport items and products between operat-
ing machines. We created 770 instances by varying the num-
ber of items and the number of treatments. Second, we cre-
ated a new domain (called “kitting”) in which a robot has to
collect several components distributed in different locations
of a warehouse in order to compose a pre-fixed kit and then
deliver it to a specific location synchronizing with a human
operator. We created 1092 instances of this domain by scal-
ing the kit size (up to 5 components) and the number of kits
to deliver (up to 3).

We implemented the learning part of our framework in
Python3 using an adaptation of our planner, TAMER, as sim-
ulator via a dedicated API. We used the PyTorch framework
for representing and training the value function neural net-
works. The learning process takes in input all the training in-
stances and, using TAMER as simulator, outputs the trained
value function as a neural network. In the learning algorithm
we set the following parameters: γ = 0.99, the maximum
size of the memory mem is 50K, the REPLAY batch size
is 1000, ∆RL = 140, εmax = 0.5 and εmin = 0.001. For
the planning part, we extended TAMER to be able to use the
trained neural network (TAMER (hnn)) as a heuristic (i.e. we
equipped TAMER with hnn) and we set ∆h = 1200 and the
weight w for the planner search to 0.8.

All the experiments have been conducted on a Xeon E5-
2620 2.10GHz; the experimental material is available at
https://es-static.fbk.eu/people/amicheli/resources/prl20.

Performance comparison. To measure the effectiveness of
our framework we performed a 10-fold cross validation: for
each domain, we generated the set of ground instances and
we randomly partitioned such set into 10 equal sized sub-
samples. In turn, we use each subsample as the testing data
for the planning part, and the remaining 9 subsamples as
training data for the learning part, resulting in ten runs.

We consider three competitors. TAMER (hadd) is the
fully-symbolic planner described in (Valentini, Micheli, and
Cimatti 2020) that uses no learned information, TAMER
(hnn) is the same planner equipped with the learned heuris-
tic and πnn is the execution of the learned policy with no
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TAMER (hadd) # episodes πnn TAMER (hnn)
solved avg plan size solved avg plan size solved avg plan size

1 52 14 50k 66 25 73 18
100k 71 22 73 18

2 58 14 50k 70 22 75 17
100k 70 19 72 17

3 58 14 50k 70 21 73 17
100k 73 19 75 17

4 57 13 50k 66 21 72 17
100k 68 20 76 17

5 55 15 50k 66 25 75 19
100k 69 21 69 19

6 60 14 50k 66 23 76 17
100k 69 17 77 17

7 54 14 50k 68 21 76 18
100k 75 21 73 18

8 57 14 50k 61 23 73 18
100k 73 20 69 18

9 57 14 50k 71 25 74 18
100k 66 21 70 18

10 52 14 50k 72 21 77 19
100k 65 22 54 16

all 560 14 50k 676 23 744 18
100k 699 20 708 18

Figure 3: Results on the MAJSP domain: learning curves
(above) and coverage (table). We plot the curve for each fold
in light blue and the average solving rate in dark blue. For
each fold and each approach, we report the total number of
solved instances and the average plan length.

backtracking (πnn(s) = arg maxα Vnn(α[s])).
We imposed a 600s/20GB time/memory limit for execut-

ing all the planning approaches; instead, the learning algo-
rithm has been executed for 100000 episodes.

Figures 3 and 4 report the learning curves and the cover-
age results for all the ten folds. In the learning curves, we
plotted on the y-axis the solving rate of the previous 1000
episodes, that is we plot the percentage of episodes (over the
previous 1000) that reached a goal state while learning. In
dark blue we averaged the 10 runs (one for each fold). In the
tables, for the πnn and TAMER (hnn) approaches, we also re-
port the performance of a snapshot of the learned value func-
tion after 50000 and 100000 episodes to assess the learning
speed. The last row of each table reports the average plan
length and the total number of solved instances.

The results show how the RL algorithm is able to learn
in all the ten folds, reaching a high solving rate for both
domains with a small variance between the ten runs. It is
interesting to note that in the MAJSP domain after 40000
episodes the curve spikes and the average solving rate imme-
diately reaches 80%, while the learning curve for the kitting
domain exhibits a steady linear growth.

The tables show how both the learning-based approaches
(πnn and TAMER (hnn)) are significantly superior to the
plain TAMER(hadd). In fact, the two selected domains are
hard for the normal reasoning techniques because they ex-
hibit complex temporal constraints, cyclic behaviors (e.g.
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TAMER (hadd) # episodes πnn TAMER (hnn)
solved avg plan size solved avg plan size solved avg plan size

1 44 15 50k 66 18 99 21
100k 97 21 107 21

2 35 15 50k 66 21 95 22
100k 82 21 97 21

3 38 15 50k 55 18 83 20
100k 97 20 99 20

4 45 15 50k 68 20 98 19
100k 88 22 100 21

5 47 15 50k 85 19 101 19
100k 88 19 101 19

6 38 15 50k 53 20 85 20
100k 78 22 108 23

7 30 15 50k 44 18 75 19
100k 90 24 106 23

8 42 15 50k 65 18 95 20
100k 95 21 104 21

9 36 15 50k 44 15 70 17
100k 89 22 91 20

10 40 14 50k 71 19 95 21
100k 92 21 102 21

all 395 15 50k 617 19 896 20
100k 896 21 1015 21

Figure 4: Results for the Kitting domain.

in kitting we need to move between the deposit location
and the different shelves several times) and because they
are combinatorially hard (e.g. the JSP component of MA-
JSP). Moreover, the TAMER(hnn) approach is able to solve
consistently more instances than any competitor: even when
the policy execution πnn comes close to the coverage of
TAMER(hnn), the average plan length is higher. This is due
to the combination of the heuristic function (derived from
the learned value function) with the path cost g(s) in the
search algorithm. This combination balances the systematic
search performed by the planner with the information gath-
ered during learning. We also highlight that both TAMER(*)
approaches are guaranteed to eventually find a plan if it ex-
ists, while the plain execution of the learned policy (πnn)
can diverge or fail to find a plan.

Sensitivity Analysis. A second experiment is aimed at as-
sessing the relevance of the different inputs we provide to
the neural network Vnn during learning. We tried to learn
from the whole set of ground instances for each domain and
we disabled each of the five kinds of inputs to the network by
removing the corresponding input neurons and the attached
part of first layer before starting the learning algorithm.

Figure 5 shows the learning curves for both the domains.
The results indicate that, for MAJSP, the encodings of flu-
ents, actions and temporal network are needed to reach a
good learning performance, while the other inputs (goals and
constants) seem less impacting on this domain as their learn-
ing curve is similar to the one with all the inputs provided.
This phenomenon is due to the nature of the MAJSP domain
and the way it is encoded: essentially each item needs to be
treated in a certain way and the goal just requires a subset
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Figure 5: Learning curves of the MAJSP (above) and kitting
(below) domains with different input configurations.

of the items to be processed. However, the information on
which items are relevant for the current instance is present
in both the goal formulation and in the constants that are
used to indicate which objects do exist (the o∃i constants).
For this reason, we experimented with a network deprived
of both the goals and constants inputs and we can see how it
performs badly, confirming the need of all the provided in-
put. The situation for kitting is similar, but only the network
without goals is able to learn comparably with the fully-
informed one. This is again due to the problem nature: the
goal of kitting is to deliver a certain number of kits, but their
composition (that determines the path to be taken between
the shelves) is encoded using constants that, in this case, be-
come necessary for learning a useful value function.

7 Conclusions
This paper presents the first approach to learn heuristic func-
tions for temporal planning. Leveraging recent advance-
ments in RL, we designed a workflow that is able to use
a finite set of instances with different number of objects and
synthesize a heuristic that can effectively solve problems
with a bounded number of objects. The approach exploits
modern neural networks and is experimentally shown to be
superior to both planning and reinforcement learning alone.

There are several avenues for future research. First, the
approach is limited because the instances being solved need
to have a known bound on the number of objects; moreover,
we currently assume that the training set is finite instead one
can consider the case where an instance sampler is given
ranging over a set of possibly infinite instances. A third di-
rection is to generalize the network architecture: the current
one has been experimentally derived, but having a structured
way to construct the architecture given the domain and the
bound would widen applicability of the technique.
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