This is a pre-print version of the homonymous paper appearing in Intelligenza Artificiale 2017.

Copyright (c) 2017 belongs to 10S Press. DOI: https://doi.org/10.3233/1A-170112

Intelligenza Artificiale 1 (2017) 1-5
10S Press

Disjunctive Temporal Networks with
Uncertainty via SMT: Recent Results and

Directions !

Andrea Micheli

Embedded Systems Unit, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy

amicheli@fbk.eu

Abstract.

Many Planning and Scheduling systems are designed assuming that the system under control is able to decide the duration
of all the activities being executed. However, in many application scenarios this assumption is not acceptable because the actual
timing of actions is not under direct control of the plan executor. Hence, new Planning and Scheduling techniques are needed to
deal with this temporal uncertainty explicitly.

In this paper, we summarize and systematize a series of works in which we addressed this uncertainty problem in the realm
of temporal network scheduling. We show how Satisfiability Modulo Theory (SMT) solvers can be exploited to quickly solve
different kinds of query in this setting. In particular, we focus on the framework of Disjunctive Temporal Networks with Uncer-
tainty and address the three degrees of controllability for the fully-disjunctive class of problems, solving several open problems
in the literature and experimentally showing the performance of the developed techniques. Finally, we outline and discuss several
foreseeable directions of research in this field.

Keywords: Scheduling under Uncertainty, Temporal Problems with Uncertainty, Temporal Uncertainty, Satisfiability Modulo

Theory

1. Introduction

Planning is the problem of synthesizing a strategy
or a course of actions to control a known system in or-
der to achieve a desired goal [27]. We focus on tempo-
ral planning and scheduling techniques, that are plan-
ning algorithms that can deal with systems having real-
time constraints (such as synchronizations and dead-
lines) and that consider the precise timing of the ac-
tivities. A lot of research has been devoted to these is-
sues over the years, but many planning and scheduling

IThis paper is based on the PhD Thesis work in [41] titled “Plan-
ning and Scheduling in Temporally Uncertain Domains” that won
the “Marco Cadoli” award for the best PhD dissertation granted by
the Italian Association for Artificial Intelligence. The article summa-
rizes the thesis contribution concerning temporal networks schedul-
ing and discusses the current status on this line of research as well
as several promising future directions.

systems still assume that the duration of each activity
being planned as well as all the temporal constraints
are under control of the plan executor that can freely
schedule its activities, without any uncertainty. In real
world scenarios, however, the duration of an activity is
not always controllable. For example, the duration of
a car trip from San Francisco to Los Angeles is not un-
der the complete control of the driver: it also depends
on traffic and weather conditions. In this kind of appli-
cations, different approaches are possible for planning.
One possibility is to disregard uncertainty, estimating
beforehand the duration of the trip: if, during execu-
tion, the trip is taking longer or shorter than expected,
a new plan needs to be generated. Another idea is to
come up with a plan that does not commit to a spe-
cific duration of the trip, but tries to be as general as
possible in either a formal or a best-effort way.

1724-8035/17/$27.50 (© 2017 — 10S Press and the authors. All rights reserved

2 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

Recently, we have been involved in a line of research
aiming at relaxing this assumption to allow for more
realistic and effective temporal planning. The idea is to
explicitly model the uncertainty in the problem, allow-
ing activities that have uncontrollable duration (assum-
ing that minimal and maximal bounds for the trip dura-
tion are given). In the example above, this amounts to
synthesize a strategy for the journey that is guaranteed
to achieve the goal regardless of the traffic conditions,
assuming that the duration of the trip will stay in the
modeled bounds. Differently from other works, we are
not interested in the probability distribution of the trip
duration: we want to provide a plan that is guaranteed
to work for every possible duration of the trip, not to
maximize probabilistic expectation.

This controllability issue can be tackled at differ-
ent levels; in this paper we focus on the problem
of scheduling a set of activities having uncertain du-
ration. This is the basic ingredient for the develop-
ment of many planning techniques [18]. This paper re-
constructs and summarizes our work in the realm of
scheduling, collecting and presenting the main results
in a coherent and holistic way.

The main formalism used in planning to model tem-
poral knowledge is the Temporal Network (TN) [24].
In essence, a TN is a set of temporal constraints ex-
pressed over a set of time-valued variables that repre-
sent the time points that need to be scheduled. Over the
years, the framework has been extended to represent
temporal uncertainty [58] and the resulting Temporal
Network with Uncertainty (TNU) is ideal to model ac-
tivities having uncontrollable duration.

This paper discusses the following contributions.
We first re-visit the problem of strong controllability
of TNU, providing a set of encodings of the problem
into the Satisfiability Modulo Theory (SMT) frame-
work that are empirically evaluated to show their effi-
ciency with respect to the state-of-the-art. Second, we
address the weak controllability decision problem for
the disjunctive class of TNUs by reducing it to SMT.
This accounts for the first implementation of a deci-
sion procedure for this problem. Third, we address the
open problem of weak strategy extraction. We provide
a portfolio of algorithms for both the classes and show
their empirical performance. Fourth, we tackle the dy-
namic controllability problem for the disjunctive class
of TNUs. We provide a reduction of the problem to a
reachability game in a linear-sized Timed Game Au-
tomata (TGA). This not only is the first solution tech-
nique for the open problem, but it also provides the
first dynamic solution in closed form. Then, we exploit

the ideas behind the formal TGA encoding to provide
a more efficient, dedicated solution technique. Finally,
we present a discussion on the status and the foresee-
able next steps for this research line.

Structure of the Paper. The paper is structured as fol-
lows. Section 2 presents some background and nota-
tion needed for the rest of the paper. In section 3 we
introduce the TNU formalism and the relevant queries.
Sections 4 to 6 are concerned with strong, weak and
dynamic controllability, respectively. In section 7 we
survey the related literature while in section 8 we dis-
cuss the status of this research line and we outline sev-
eral possible research directions. Finally, we conclude
in section 9.

2. Background

Technical Preliminaries Our setting is standard first
order logic [35]. The first-order signature is composed
of constants, variables, function symbols, Boolean
variables, and predicate symbols. A term is either a
constant, a variable, or the application of a function
symbol of arity n to n terms. A theory constraint (also
called a theory atom) is the application of a predicate
symbol of arity n to n terms. An atom is either a the-
ory constraint or a Boolean variable. A literal is either
an atom or its negation. A clause is a finite disjunction
of literals. A formula is either true (T), false (L), a
Boolean variable, a theory constraint, the application
of a propositional connective (—, A, V, —, <) of arity
n to n formulae, or the application of a quantifier (V, 3)
to an individual variable and a formula. If ¢ and ¢5 are
terms, and ¢ is a formula, an if-then-else (ITE) term
is ite(@, t1,t2). The semantics of an ITE term is the
usual if-then-else semantics from programming lan-
guages. For example, the term ite(x > y, z,y) where
z and y are numeric variables, corresponds to the max-
imum between x and y. An ITE term ite(¢,tq,t2)
occurring in a formula 1) can be rewritten by sub-
stituting each occurrence with a fresh variable v and
by conjoining (—¢ V (v = 1)) A (¢ V (v = t2)).
See [34] for a thorough discussion. We use z, y, v, . ..
for variables, and 7, 7/, U, . .. for vectors of individual
variables. Terms and formulae are referred to as ex-
pressions. Formulae are denoted with Greek letters:
¢,1,.... Let ¥ be a vector of variables, we indicate
the i-th variable in the vector with x;. We write ¢(z)
to highlight the fact that « occurs in ¢, and ¢(Z) to
highlight the fact that the free variables of ¢ are vari-

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 3

ables in #. We indicate with QZ.¢(Z) the formula
Qx1.Qxs. ... Qryp.d(x1,. .., z,), where Q € {V,3}.

Let ¢(Z) = A\, ¢i(Z;) be a conjunction of formulae.
We write ¢(Z)|y to represent the conjunction of the
¢;(Z;) in which at least one variable of % occurs in Z;.

Substitution is defined in the standard way [35]. We
write ¢[s/t] for the substitution of every occurrence of
term ¢ in ¢ with term s. Let £ and 5 be vectors of terms
having the same length, we write $[5/#] for the parallel
substitution of every occurrence of ¢; in ¢ with s;.

We use the standard semantic notions of interpreta-
tion and satisfiability. We call satisfying assignment or
model of a formula ¢ (&) a total function p that assigns
to each x; an element of its domain such that the for-
mula @[u(Z)/Z] evaluates to T provided an interpre-
tation of function symbols. A formula ¢(Z) is satisfi-
able if and only if it has a satisfying assignment and an
interpretation. Following standard naming, we say that
a formula is in Conjunctive Normal Form (CNF) if it
is expressed as a conjunction of disjunctions of atoms
or negations of atoms: /\?:1 \/?Z1 1, I being a literal. Tt
is well known that each formula can be reduced to an
equi-satisfiable CNF formula of linear size [22].

Satisfiability Modulo Theories Given a formula ¢,
satisfiability is the problem of finding a satisfying as-
signment for ¢ and an interpretation for the func-
tional symbols in ¢. This problem is approached in
propositional logic with enhancements of the DPLL
algorithm [21]: the formula is converted into an equi-
satisfiable one in Conjunctive Normal Form (CNF);
then, a satisfying assignment is incrementally built, un-
til either all the clauses are satisfied, or a conflict is
found, in which case back-jumping takes place (i.e.
certain assignments are undone). Keys to efficiency are
heuristics for the variable selection, and learning of
conflicts [47].

Given a first-order formula) expressed in a decid-
able background theory T, Satisfiability Modulo The-
ory (SMT) [4] is the problem of deciding whether
1 is satisfiable. For example, consider the formula
(r <y)A((x+3 = 2z) V(2 > y)) in the theory of real
arithmetic (z,y, z € R, and the symbols <, 4+, = and
> are interpreted in the usual way). The formula is sat-
isfiable and a satisfying assignment is {x := 5, y :=
6, z := 8}. The theory of real arithmetic interprets “3”
as the real number 3 and +, =, <, >, <, > as the usual
mathematical functions and relations.

There exist several theories of practical interests:
Equality and Uninterpreted Functions, Linear Arith-
metic over the Reals and the Integers, Non-Linear

Arithmetic, Difference Logic, Bit Vectors, Arrays and
others. In this paper, we concentrate on the theory of
linear arithmetic over the real numbers (LR.A) be-
cause it offers a natural and convenient way to model
continuous, dense time. A formula in LR.A is an ar-
bitrary Boolean combination, a universal (V) or an
existential () quantification, of atoms in the form
>, aixy X ¢ where e {>, <, <, >, #, =}, every x;
is a real variable, every a; is a real constant and c is
also a real constant. For brevity, given two real con-
stants [, u such that [< u, we denote with t € [I, u]
the formula ! < ¢t At < w. With a slight abuse of no-
tation, we allow [or u to be —oo or 400, respectively.
The semantics is obtained by simply removing the con-
straint containing oo as it is tautological. For example,
t € [2,00] becomest > 2; ¢ € [—00, 5] becomes t < 5
and t € [—o0, 00| becomes T. Real Difference logic
(RDL) is the fragment of LR.A where all the atoms
have the form z; —x; >< c¢. We denote with QF _LRA
and QF _RDL the quantifier-free fragments of LR.A
and RDL, respectively.

The most efficient implementations of SMT solvers
use the so-called “lazy approach”, where a SAT solver
is tightly integrated with a theory-specific solver for
conjunctions of constraints (called T-solver). The role
of the SAT solver is to enumerate the truth assign-
ments to the Boolean abstraction of the first-order for-
mula. The Boolean abstraction has the same Boolean
structure of the first-order formula, but “replaces” the
predicates which contain theory information with fresh
Boolean variables. The Boolean abstraction of (x <
YA(z+3=2)V(z>y))isaA (bVc), where
a, b, c are fresh Boolean variables. The T-solver is in-
voked when the SAT solver finds a satisfying assign-
ment for the Boolean abstraction: the satisfying assign-
ment to Boolean abstraction maps directly to a con-
junction of T atoms, which the T-solver can handle. If
the conjunction is satisfiable also the original formula
is satisfiable. Otherwise the T-solver returns a con-
flict set which identifies a reason for the unsatisfiabil-
ity. Then, the negation of the conflict set is learned by
the SAT solver in order to prune the search. Examples
of solvers based on the “lazy approach” are MATH-
SAT [7,10], Z3 [23], YICES [25] and OPENSMT [8].

Traditionally, SMT solvers have been focused on
solving quantifier-free formulae, but techniques to deal
with quantifiers on selected theories have been recently
developed and implemented. For the sake of this pa-
per we are interested in dealing with quantifiers in the
LRA theory. Some solvers (e.g. Z3) natively support

4 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

20

0 78 1011 16 19 I
} Il Il Il Il Il Il
t
p—
AS A€
777777
B (Uncontrollable) 200000
B; B.

Fig. 1. Schema of a possible temporal allocation in the running ex-
ample. Activities are depicted in time, filled regions are used to in-
dicate the minimal guaranteed duration of an activity, the region in
which uncontrollable event B, can happen is striped, while the re-
gion in which A, can be scheduled is the union of the two white
rectangles. The problem deadline is indicated with the solid line at
time 20.

LRA quantifiers, but others (e.g. MATHS AT) are still
limited to the quantifier-free fragment.

A theory T is said to admit quantifier elimination,
if for every quantified formula ¢ in T, there exist a
quantifier-free formula ¢’ that is logically equivalent
to ¢. It has been proven that LR.A admits quanti-
fier elimination [51]. this means that from any LR.A
formula it is possible to derive a logically-equivalent,
quantifier-free LR.A formula (in QF _LR.A). Several
automated techniques for quantifier elimination exist
for the LR A theory: Fourier-Motzkin [51] and Loos-
Weispfenning [38] are two well-known examples.

3. Temporal Networks with Uncertainty

In this section, we formalize various classes of tem-
poral networks proposed in the literature. In particular,
we focus on disjunctive temporal networks with uncer-
tainty (DTNU). We start by proposing an example.

Suppose we have two activities A and B. Activity
A has duration of at least 7 units and at most 8 units
or at least 10 units and at most 11 units, depending on
a controllable decision. Activity B is uncontrollable,
meaning that the actual duration is not decidable by the
solver, but we can assume that it is at least 8 units and
at most 11 units. We require that activity B must start
after activity A and both activities must end within 20
units. The example is depicted in figure 1.

A Temporal Network (TN) is a formalism that
is used to represent temporal constraints over time-
valued variables representing time points. Two fami-
lies of TNs have been presented in literature over the
years: TN without uncertainty, in which all the time
points can be freely assigned by the solver [24,53] and
TN with uncertainty (TNU), in which only some of

the time points can be assigned by the solver, while
the others are intended to be assigned by an adver-
sary [50,58]. As such, TNUs can be seen as a form of
game between the solver and an adversarial environ-
ment. In this part we focus on the DTNU class, where
disjunctions in constraints are allowed.

Definition 1 (DTNU [50]). ADTNU is atuple (T ,C, L),

where:

1. T is a set of time points, partitioned into control-
lable (T.) and uncontrollable (T,);

2. C is a set of free constraints: each constraint c; is
of the form, \/]D:’1 t1,; — ta; € [lij,wi], for some
t17j’ t27j € T and li,ja U5 € RU {+OO, *OO},' and

3. L is a set of contingent links: each I; € L is of
the form, (b;, B;, e;), where b; € T, e; € Ty, and
B, is a finite set of pairs (I; j,u; ;) such that 0 <
li,j < Uiy < o, j € [1,Ei] (E; being IBi); and
for any distinct pairs, (I; j,u; ;) and (I; k, u;) in
B;, either li,j > Ui OF Ujj < l¢7k.

Intuitively, time points belonging to 7. are time de-
cisions that can be controlled by the solver, while time
points in 7, are under the control of the environment.
A similar subdivision is imposed on the constraints:
free constraints C are constraints that the solver is re-
quired to fulfill, while contingent links (£) are the as-
sumptions that the environment will fulfill. As in pre-
vious work [50,58], we consider only contingent links
that start with a controllable time point. Thus, each un-
controllable time point e; is constrained by exactly one
contingent link to a controllable time point b; called
the activation time point ! of e (indicated with a(x)).

Within the framework of DTNU, we can only ex-
press uncertainty on the duration of activities (i.e.
we cannot express uncertainty on whether an activity
could occur or not, nor on its discrete outcome). Con-
tingent links are used to model the possible durations
of the uncontrollable activities, while uncontrollable
time points represent the uncontrollable ending time
of activities. We remark that the Temporal Network
model of time is continuous, and we explicitly avoid
any discretization seeking for a real-valued solution.

Any temporal network is defined over a set of time
points, namely variables representing time instants. A
temporal allocation such as the one in our running ex-
ample can be encoded in a temporal network by us-
ing two time points to represent the starting and ending

IThis formulation assumes a complete independence between
contingent links. This means that this formalism cannot express as-
sumptions of interdependence between uncontrollable durations.

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 5

[7,8] U [10, 11]

T.={A,, A, Bs}
[0, 00) Tu= {5}
C={B,— A, €[0,20], B, — A, € [0,00),

A.— Ag € [7,8]V A, — Ay € [10,11]}
L={(B:,{(8,11)}, B)}

(a) (b)

Fig. 2. The TNU model derived from the running example (b) and its
graphical representation (a). Each node of the graph is a time point,
doubly circled nodes are uncontrollable the others are controllable,
solid arrows are free constraints and dashed arrows are contingent
constraints.

time of each activity. Therefore, in order to model the
running example with a temporal network we need a
total of four time points Ay, A., Bs and B, represent-
ing the start and end of activity A and B respectively
(figure 1). B, is the only uncontrollable time point, as
we can control the starting and end time of A but we
cannot control the duration of B. The only contingent
constraint is the constraint on the duration of B. The
rest of the network is composed of requirements that
have to be always fulfilled, and can be translated in
three free constraints. The resulting TNU is shown in
figure 2.

For the sake of this paper, we define a TN without
uncertainty as a TNU (T, C, (), in which the set of un-
controllable time points 7T, is empty and the set of con-
tingent links £ is also empty. Excluding the () in the tu-
ple, this coincides with the Definitions of STN, TCSN
and DTN.

We define an assignment to the time points as a total
function from time points to real values. Given a TN
without uncertainty, checking consistency corresponds
to deciding the existence of an assignment that fulfills
all the constraints of the network. We call such an as-
signment a consistent schedule, and we say that the
TN is consistent. Checking the consistency of a TNU
(T,C, L) is defined as checking the consistency of the
TN without uncertainty (7,C U p(L), 0), where p(L)
is the set of constraints obtained by considering each
contingent link as a requirement constraint. Formally,

p(L) = {p(z) | 2 € £} and

p((b,B,e)) = \/ e—b>Ilne—b<u.
(l,uyeB

The consistency problem can be directly and effi-
ciently solved by SMT solvers equipped with the
QF _RDL theory [3,17].

Depending on the generality of the constraints in C
and the maximal cardinality of the sets B; of the ele-
ments of L, three classes of TNUs are possible [50].
Definition 1 in its general form identifies Disjunctive
Temporal Network with Uncertainty (DTNU) [50]. If
each constraint contained in C is defined on at most
two time points, the resulting network is a Tempo-
ral Constraint Satisfaction Network with Uncertainty
(TCSNU).

If each constraint in C has exactly one disjunct and
each B; has exactly one element, we obtain a Simple
Temporal Network with Uncertainty (STNU).

Similarly, we can define the corresponding TNs
without uncertainty (DTN [53], TCSN, and STN [24]).
Following the classification of Peintner et al. [50], we
also say that a network is simple-natured if each B;
has exactly one element (An STNU is always simple-
natured).

Given a TNU, values for controllable time points
can be decided, namely they can be scheduled in time
by an executor, while an uncontrollable time point e;
just happens after its activation time point b; has been
scheduled. The only assumption is that the ¢-th contin-
gent link will be satisfied by the values of b; and e;.
Given this intuitive meaning, we rephrased the concept
of situation for a TNU [58] for the DTNU problem
class.

Definition 2 (Situation). Ler P = (T ,C, L) be a TNU
and let m be the number of uncontrollable time points
(| Tul = m).

The space of situations for P is a set of tuples
Qp =Sy X -+ X Sy, where S; = U™ [I¢), ug ;). A
situation is an element w of Qp, and we write we, to
indicate the value of the i — th element of the tuple (i.e.

the duration of the contingent link for e;).

Intuitively, a situation is a choice of the actual dura-
tion for each activity with uncontrollable duration.

Given a situation, we define the projection of a TNU
as the TN obtained fixing the duration of each contin-
gent link.

Definition 3 (Projection). Let P = (T,C,L) be a
TNU and let w = (w1, . . . ,w|7,|) be a situation in Qp.
The projection P,, of the network P with respect to
the situation w is the TN (T,C’',0), where T = T,
C'=CU {6,’ —b; € [wi,wi] | <bi7Biaei> S ﬁ}

Intuitively, the projection P, is the network without
uncertainty in which each uncontrollable duration has
been fixed to a given value.

6 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

Interestingly, a number of possible queries are pos-
sible when TNU are concerned. In fact, depending on
the amount of observation that we assume for the ex-
ecutor of the schedule, three different problems can be
defined.

The first query is strong controllability that consists
in deciding the existence of an assignment to control-
lable time points that fulfills the free constraints un-
der any assignment of uncontrollable time points that
satisfies the contingent constraints. Such an assign-
ment is called a strong schedule of the network. A
TNU for which there exists a strong schedule is said
to be strongly controllable. Consider again the running
example, the network is strongly controllable and a
strong schedule is ' = {A; =0, A, = 8, B; = 8}.

Definition 4 (Strong Controllability). Let P=(T,C, L)
be a TNU. P is strongly controllable if there exists
an assignment | for T, such that for each situation

w € Qp, p is a consistent schedule for the projection
P,.

Another query that can be addressed in the context
of TNUs is weak controllability, that is concerned with
the existence of a strategy that associates values to the
controllable starting points of each activity, as a func-
tion of the uncontrollable durations. The values for the
uncontrollable durations are not known at the moment
of solving the problem; however, the executor is given
the actual value of such durations just before the exe-
cution starts.

Definition 5 (Weak Controllability). Ler P=(T,C, L)
be a TNU. P is weakly controllable if and only if for
each situation w € Qp the projection P, is consistent.

In terms of games, weak controllability is the dual
of strong controllability: in strong controllability, the
executor is required to make its move (i.e. all its de-
cisions) without observing the situation (i.e. the move
of the environment); in weak controllability, the en-
vironment is required to make all its decisions before
the executor. For example, consider the DTNU in fig-
ure 3. The problem is weakly controllable and a possi-
ble weak strategy is to schedule A at time 0 and B at
time 6, if D happens before time 7 we schedule C at
time 7, otherwise we schedule C at the same time as
D.

The last kind of query that can be addressed given
a TNU is dynamic controllability. Dynamic control-
lability is concerned with the existence of a strategy
for executing the controllable time points that depends
only on past observations of the outcomes of uncon-

T.={A,B,C}

T, ={D}

C={B—-A€(l1,6],C—Ac[7,10],
D-Be[-1,2]VD—Ce€[-1,10}

L= {(A,{(5,20)}), D}

(b)

Fig. 3. A dynamically controllable DTNU (b) and its graphical rep-
resentation (a).

trollable durations, and that guarantees that all rele-
vant constraints will be satisfied no matter how the du-
rations of the contingent links turn out. Essentially, a
TNU is dynamically controllable if there exists a weak
strategy that, in order to decide a controllable time
point at time k, does not depend on any observation
past time k. In the case of the DTNU in figure 3, the
agent seeks a strategy for executing the controllable
time points, A, B and C, that will guarantee that the
constraints are satisfied, no matter what durations the
environment happens to pick for the contingent link,
(A, {(5,20)}, D). For example, the agent might de-
cide to execute A at time 0 and then wait. Should the
environment happen to “choose” a duration of 5 for the
contingent link, the agent would observe, at time 5, the
execution of D. For example, the agent might then re-
act executing B at time 6. Later, the agent will have
to schedule C' between time 7 and 10. In this example
evolution, all the time points have been executed and
all constraints in C are satisfied, hence the agent has
succeeded. It can be checked that this DTNU is dy-
namically controllable (i.e., there exists a strategy for
the agent that ensures success no matter how the envi-
ronment behaves).

In the following, we will present the results and
techniques we developed one query at the time for the
general DTNU case.

4. Strong Controllability

Strong controllability is an important problem, be-
cause it results in a schedule that is satisfactory under
all possible uncertainties. Clearly, a strong schedule
can yield a longer time-span compared to a dynamic
strategy. However, dynamic information may not be
available, e.g. due to the lack of sensors. Furthermore,
most algorithms for dynamic execution require run-
time reasoning [30]. This may be incompatible with
some operational settings: for example, in mission-
critical systems, validating the run-time reasoner to

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 7

the required level of assurance may be prohibitively
hard. Furthermore, the computational resources avail-
able during execution may be too limited for a dynamic
approach. Examples of such application domains can
be found in production scheduling and in mission crit-
ical robotics, for which strong controllability is a very
relevant problem. We also remark that, in the same
domains, the expressiveness of disjunctive constraints
(compared to simple temporal problems) is often nec-
essary [48].

In this section, we present a comprehensive and ef-
fective approach for solving the strong controllability
problem for TNUs in the most general form including
arbitrary disjunctions.

We tackle the strong controllability problem of
TNUs by reduction to SMT. The resulting problem can
be then solved by efficient SMT solvers. This reduc-
tion has been published in [14] and [17], here we give
an overview of the techniques and the results.

GivenaTNU P = (T,C, L), we derive a number of
encodings of the problem using the expressive power
of the SMT framework. We assume each time point is
associated with an SMT variable: for every time point
inz € T we introduce a real SMT variable? z, and we
denote with T' the vector of such variables (imposing
an arbitrary order); each constraint ¢ € C is directly
mapped on the corresponding SMT formula (indicated
by [c])) by keeping the Boolean structure of the con-
straint and substituting each time point with the corre-
sponding SMT variable.

The first encoding in equation (1) is a direct logi-
cal mapping of the notion of strong controllability; we
call this encoding direct encoding. We indicate with T.
and fu the SMT variables corresponding to 7 and 7,
respectively.

VT [o(L)] = N le] 1)

c; €C

Proposition 1. The TNU P is strongly controllable if
and only if equation (1) is satisfiable (and a model of
equation (1) yields a strong schedule for P).

Proposition 1 is directly obtained by formalizing the
definition of strong controllability. Intuitively, equa-
tion (1) is satisfiable if and only if there exists an as-

2We use no graphical distinction for time points and SMT vari-
ables, because we always have a one-to-one correspondence. It shall
be clear from the context whether we are referring to the time point
(when we discuss about constraints) or to the SMT-variables (when
we work with formulae).

Al Ol

A Ao YB.

Fig. 4. The running example of figure 2 seen from an activities point
of view to explain the encoding of the problem. The striped region
is the uncontrollable space, namely where the uncontrollable time
point Be can be scheduled given the decision on the related control-
lable time point (Bs). The value of yp, in the shown scenario is
seen as the actual duration of the B activity.

signment to the controllable variables 7. such that, for
all assignments to the uncontrollable variables 7, (that
is, for each situation) satisfying the contingent links £,
the free constraints C are also satisfied. In the above
formula, the controllable variables are implicitly exis-
tentially quantified. In case of satisfiability, the SMT
solver returns a satisfying assignment to the control-
lable variables that is exactly a strong schedule.

In order to enable further simplifications, we no-
tice that contingent constraints depend both on control-
lable and uncontrollable time points, and we re-code
the problem as follows. We encode each uncontrollable
time point e; in terms of the time difference with its
starting time point b; = a(e;) by means of an uncon-
trollable duration variable y.,. Intuitively, if we take
an activity view, y., measures the duration of the -
th activity. For every contingent link I; = (b;, B;, e;)
with B; = {<fi71, ui71>, <£i,Ei7 uiﬂEi>}, let Ye, € R be
the uncontrollable offset variable associated to e; such
that \/f;1(3/ei € [l;j,ui;]). ye, represents the dura-
tion of the interval [b;, e;] that is constrained by the i-th
contingent link. We are thus symbolically encoding a
situation w = (w1, ..., w)7,|) in which y., models the
value of w;. Figure 4 gives a pictorial representation of
this encoding interpreted at the activity level.

Definition 6 (TNU Encoding). Givena TNU (T ,C, L)

with T,={e1, €2, -+ ,emn}, let ?ui@e“yew ey Yen)
be the vector of uncontrollable duration variables.
We define the encoding of the problem as a tuple
(T, Y., D(Y,), U(T,,Y,)) where

¥ . m Ei
L(Yu) = A2y \/j:1(?/ei € [lij uijl)
and V(T.,Y,) is defined as:

/\ cl(aler) +ye,)/ea]. . [(alem) + v,)/em].

ceC

8 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

Intuitively, I'(Y,,) is the formula representing the con-
junction of all the contingent links after the re-coding,
and U(T.,Y,) is the conjunction of all the free con-
straints rewritten in terms of fc and Yu.

From here on, we assume an encoded problem
(T.,Y,,T(Y,),¥(T,,Y,)) is given. In this setting, the
strong controllability problem consists in finding a
value for T, that satisfies the free constraints ¥ (Tc, Y,)
under any possible value of Y, that satisfies T'(Y,,).

The strong controllability encoding in equation (1)
can be re-coded as an LR.A formula in the free vari-
ables T’C as follows.

VY,.(0(Y,) = ¥(T.,Y,)) 2)

We call this encoding Offset Encoding. This formu-
lation corresponds to a quantified SMT problem in
LRA, and still requires a solver that supports quanti-
fied formulae, but the part of the encoding representing
the contingent link is now dependent on Y. only.

The main problem in the previous encodings is the
scope of the universal quantifier. Since the compu-
tational cost of quantification is very high, we can
rewrite the offset encoding in equation (2) in order
to obtain a more efficient encoding. Let us assume
that W(T., Y,,) is written as a conjunction of formulae
U (fc,l,fuh), where T_’Ch, C T. and Yuh C Y, are the
variables used in the formula ¢/;,. This assumption can
be easily satisfied by converting ¥ (7%, Y,) in CNF>.

meu /\ ﬂfh f(‘}m _;Lh)

We have that /\hVY (-T(Y,) vV 1/Jh(o> Yay)) can
be equ1valently rewritten to /\, VYu, (ﬁF()\ Yu,

(T, , Y.,), and we obtain the following distributed
encoding. We recall that ¢|z is a notation meaning the
restriction of the conjunction ¢ to the conjuncts that
are defined on at least one variable of Z.

—

/\vyuh (T Flv,, Von(Te Vo)) G

The size of the produced (quantified) formula is lin-
ear with respect to the original TNU. This encoding

3Tf the used CNF transformation introduces additional variables,
those are existentially quantified and extend the model of equa-
tion (1) by preserving the satisfiability and the strong schedules en-
coded in the models.

still requires a solver that supports quantified formu-
lae, and contains as many quantifiers as conjuncts in
U (T, Yy).

In order to exploit solvers that do not support quan-
tifiers, we propose an encoding of strong controllabil-
ity into a quantifier-free SMT (LR.A) formula. This
is obtained by resorting to an external procedure for
quantifier elimination.

We rewrite equation (3) as A\, —3Y,, .(C(Y)ly, A

Uh
—tpn (T, s uh)), in order to apply a procedure for
the elimination of existential quantifiers (e.g. Fourier-
Motzkin [51]). In the following we refer to each con-
junct after quantifier elimination as wh(C,L) (that is
then a quantifier-free formula).

—

'l/}frz‘(fch) A _'El}_}uh (P(?u) Yu,, N = (Tch,) ?uh))

The resulting encoding, reported in equation (4), is
called eager for-all elimination encoding.

N vn(Te,) “
h

Clearly, this approach moves most of the computation
complexity from the solving of the resulting formula
to the encoder. In fact, the encoder needs now to solve
a number of costly quantifier eliminations.

For the simple-natured TCSNU class, it is not nec-
essary to apply a general purpose quantifier elimina-
tion procedure. Given the specific nature of the con-
straints and the limitation to convex contingent con-
straints, only few cases are possible, and for each of
them we use a pattern-based encoding, that in essence
pre-computes the result of quantifier elimination. This
result can be thought of as generalizing to simple-
natured TCSNUs the result proposed by Fargier and
Vidal [58] for the case of STNU. We highlight that for
the STNU case, this special quantification technique
yields (in polynomial time) an STN that can be solved
in polynomial time by any SMT solver (when no dis-
junctions are present the problem degenerates in a sin-
gle call to the theory solver that uses a single call to
simplex solver to solve the entire problem).

There are eight possible clause patterns* shown in
table 1. For unit clauses, we proceed as in the work
by Fargier and Vidal [58]: the first four rows of ta-
ble 1 report these results. The rest of the table present
the results for the disjunctive binary clauses. The static

4This is because the problem can be encoded in 2-cnf using the
“hole encoding” [17].

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 9

Clause pattern Quantification Result (¢}, (7:,,,)

(bi—b)>k | (bi-b)>k

(ei —bj) >k (bi —bj) > k—Li

(bi —ej) >k (bi = bj) > k+Uj

(ei—ej) >k (bi—bj) >k—-Li+Uj

Gemb) SV v (b —by) > ks

(bi — bj) > ko

(ei —bj) <kiV | ((bi +Li—bj >ki)V(bi + Ui —b; < k1)) A

(ei —bj) > k2 ((bi + Li —bj < k1)V(bi + Li — b; > k2))

(bi—e€j) <kiV | ((bi—bj —Lj < ka)V(bi —bj —U; > ka2)) A

(bi —ej) > k2 ((bi =bj — Lj > k2)V(bi —b; — L; < k1))
(b + Ui — b; — U; > k) (bi + Us — by — Lj < k1)) A

(ei—ej) <kiV | (bi+Ui—b; —U; <k1)V(bi+ Li —b; —U; > k1)) A

(ei —ej) > ke ((bi+Li —bj — Lj <ka)V(bi+Li —b; —U; > ka2)) A
(b + Li — by — Ly > ka)V(bi + Li — b — Lj < ks))

Table 1

Static quantification for simple-natured TCSNUs. For each clause
pattern deriving from a hole-encoding of free constraints, the corre-
sponding 1/),1: (fc ,) is presented, assuming that if e; is an uncontrol-
lable time point, b; is its corresponding controllable time point that
relates to it with the ¢-th contingent link (b;, {(L;, U;)}, e;).

quantification is possible by knowing that the con-
tingent links are in the shape e; — b, € [L;, U]
and thus each possible free constraint clause can be
parametrized and resolved upfront.

This specialized quantification technique results in a
2-CNF formula that has linear size in the original TC-
SNU. This encoding spares the computational cost of
quantifier elimination and produces a highly optimized
QF _LRA formula.

Experimental Results. We experimentally evaluated
our approach by developing a tool that automatically
encodes the various classes of temporal problems as
SMT problems; the SMT encodings are in turn solved
by state-of-the-art solvers. We used a set of random
benchmarks generated by means of an extension of the
generator presented in [3], where uncertainty is ran-
domly introduced: each constraint generated by the
consistency problem generator is turned in a contin-
gent link with a given probability, and its destination
node is considered as uncontrollable. The benchmark
set contains 1054 simple-natured instances for each
TNU class (STNU, TCSNU and DTNU).

To the best of our knowledge, there are no available
implemented solvers for strong controllability prob-
lems. Thus, we evaluated the different approaches we
presented, to highlight the difference in performance
and the respective merits. In addition, we also com-
pare our approach with the PVYS algorithm described
in [50]: we implemented our own version of the al-
gorithm in a tool, written in Python, that and ex-

ploits the MATHSAT SMT solver to check the con-
sistency of DTNs. The tool has been implemented in
two variants. The first one directly follows the orig-
inal pseudo-code; the second one exploits the incre-
mentality feature of MATHSAT, to gain more effi-
ciency: instead of checking the consistency of each
problem separately, it reuses information derived from
previous checks whenever possible. In order to test
the effectiveness of the eager for-all elimination en-
codings (EFE) we experimented with different quanti-
fier elimination techniques: the internal Z3 quantifier
elimination (Z3QE), the MATHS AT5 Fourier-Motzkin
implementation (M5FM) and the MATHSATS Loos-
Weispfenning implementation (MSLW).

The results are reported in figure 5. We plotted in
logarithmic scale the cumulative time in seconds to
solve the considered set of benchmarks. The total time
includes the encoding time, which may be significant
in the case of quantifier-free encodings. The plots show
that the OFFSET and DIRECT encodings quickly reach
the resource limits, and are unable to solve all the in-
stances. The behavior of the DISTRIBUTED encoding
is slightly better than the eager for-all elimination ap-
proaches. The difference can be explained in purely
technological terms: the quantifier elimination mod-
ules are called via pipe in our implementation, while
Z3, on the DISTRIBUTED encoding, performs quanti-
fier elimination “in-memory”.

We notice that the static quantification techniques
(EFE STATIC), when applicable (i.e. for STNU and
simple-natured TCSNU), yield a substantial improve-
ment in performance: the expensive quantifier elimina-
tion step is avoided altogether.

In the STNU problem class, the results of PVYS
are comparable to the SMT-based approaches. This is
expected, because the implementation of PVYS uses
the same SMT-based calls to FARGIERVIDAL. In the
disjunctive cases, PVYS performs dramatically worse
than the SMT-based approaches, due to the enumera-
tive treatment of disjunctions. Finally, we notice that
incrementality improves the performance, even if the
difference is not dramatic.

5. Weak Controllability

The second query of interest is weak controllability,
that is concerned with the existence of a strategy that
associates values to the controllable starting points of
each activity, as a function of the uncontrollable dura-
tions.

10 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

10000
I
10000
I

1000
I

— PVYS
PVYS Incremental
- Z3Direct
— - z30ffset
- Z3Distributed
- Z3EFE Z3ge
—— Z3EFE Msfm
-=- Z3EFE M5lw S
23 EFE Static

100
I

Cumulative time (sec)

MathSATS EFE Z3qe

—— MathSATS EFE MSfm
- MathSATS EFE M5iw
-+ MathSATS EFE Static -

10000
I

1000
I

— PVYS
PVYS Incremental
- Z3Direct
— - Z30ffset
- Z3Distributed
- Z3EFE Z3qe
— Z3EFE Msim
-=- Z3EFE M5w Bl
23 EFE Static

100
I

— PVYS
PVYS Incremental

Cumulative time (sec)

- Z3Direct
— - Z3Offset
- Z3Distributed
- Z3EFEZ3ge
— Z3EFE M5lw
-=- Z3 EFE M5fm
MathSATS EFE Z3ge
—— MathSATS EFE M5fm
- MathSATS EFE MSiw

MathSAT5 EFE Z3qe

—— MathSAT5 EFE M5fm
- MathSATS EFE MSlw
-+ MathSATS EFE Static -

i i
T T T T T T T T

T
0 200 400 600 800 1000 0 200 400

of instances

(@)

of instances

T
600 800 1000 0 200 400 600 800 1000

of instances.

(©)

Fig. 5. Results for strong controllability experimental evaluation for the STNU (a) TCSNU (b) and DTNU (c) problem classes.

There are several reasons for studying weak control-
lability. From the temporal problems perspective, weak
controllability is the conceptually interesting dual of
the strong controllability problem. In addition, decid-
ing whether a given TNU is weakly controllable serves
as a pre-check for more complex problems such as dy-
namic controllability. In fact, weak controllability is a
necessary condition for dynamic controllability [58].
From the practical standpoint, weak controllability al-
lows for the modeling of a setting where a number of
tasks is to be repeatedly executed, but with modalities
that depend on some environmental parameters that
become available just prior to execution.

We propose a general decision procedure for the
problem of weak controllability for DTNUs based on a
reduction to an SMT problem for the theory of Quan-
tified Linear Real Arithmetic (LR.A). Then, we inves-
tigate the problem of on-line strategy execution, i.e.
given a weakly controllable DTNU, how to repeatedly
produce a suitable schedule for the controllable time
points as a function of a valuation to the uncontrollable
ones. This motivates the investigation of efficient run-
time execution for weakly controllable TNUs. Finally,
we address the synthesis problem: given a weakly con-
trollable temporal problem, we algorithmically synthe-
size a function from an assignment to uncontrollable
time points to an assignment to the controllable ones.
We propose a number of algorithms for the synthesis of
a strategy. These methods have been published in [15]
and [16], here we give an overview of the techniques
and the results.

Deciding Weak Controllability. Given a TNU P, we
want a decision procedure that answer positively if and

only if P is weakly controllable. We start by rewrit-
ing the problem as per in definition 6: we encode each
uncontrollable time point e; in terms of the time dif-
ference with its starting time point b; by means of an
uncontrollable duration variable ., . Intuitively, a tem-
poral problem is weakly controllable if there exists a
strategy that maps every situation to a corresponding
assignment to controllable time points, in such a way
that all free constraints are satisfied. We can rephrase
the concept of weak controllability presented in defi-
nition 5 as a satisfiability problem modulo the LR.A
theory as follows.

Proposition 2. Let P= (T ,C, L) be a TNU and let its
encoding be (T.,Y,,T(Y,), U(T.,Y,)). P is weakly
controllable if and only if the following formula is
valid modulo the LR A theory.
VY, 3T5.(0(Y,) — U(T,, Y.,)) ©)
The formula in equation (5) is a direct formalization
of the intuitive notion of weak controllability, and of
the original definition in [58]. The universal quantifier
captures the uncertainty in the decision of the duration
variables. The implication ensures that free constraints
are checked only when 1"(}7”) is satisfied, that is only
on assignments that encode situations of the original
temporal problem. Equation (5) is a formula in LR.A
that is valid if and only if the problem is weakly con-
trollable. Any SMT solver supporting LR.A is able to
deal with such a formula directly and it can correctly
solve the problem. However, due to the high compu-
tational cost of directly handling quantifiers, an opti-
mized encoding is required.

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 11

We first rewrite the formula encoding weak control-
lability in proposition 2 by transforming the external
universal quantifier into the negation of an existential
one, and we consider the negation of the resulting for-
mula. We call the resulting formula inverted encoding.

—3T5.(D(Y,) = U(T5,Y,)) (6)

If this formula is unsatisfiable, then the problem is
weakly controllable, while if it is satisfiable, then the
problem is not weakly controllable. Note that in equa-
tion (6) we dropped the outermost -3Y, as any SMT
problem is inherently an existential quantification and
we consider the negation by reversing the interpreta-
tion of the result. Intuitively, we are searching for an
assignment to the uncontrollable time points that can
violate the free constraints under any possible strategy
(it is a winning strategy for the environment). In fact,
if the formula is satisfiable, each model corresponds to
a situation for which no weak strategy to schedule the
controllable time points exists. Therefore, differently
from equation (5), this encoding is also helpful for de-
bugging a non-weakly controllable problem.

A further improvement can be achieved by limiting
as much as possible the scope of the existential quan-
tifier. To this extent, we push the existential quantifier
over the implication, and thus the quantification is lim-
ited to the free constraints only (ref. as assumption-
extraction encoding):

L(Y,) A =370 9(T%, Y,). (7)

Weak Strategies. 'We now consider the problem of ac-
tually executing a control strategy that is associated
with a given weakly controllable TNU. A TNU is a
modeling framework that represents a set of assump-
tions over the environment and imposes a set of re-
quirements to be fulfilled. We consider the use-case in
which a strategy for scheduling the controllable time
points is repeatedly executed by reading the inputs
from the environment in the form of a situation. Such
a situation is generated by reading the parameters on
which the uncontrollable durations depends, by means
of appropriate sensors or estimators. The strategy com-
putes an assignment to the controllable time points that
fulfills the problem constraints and is then deployed to
an actuator for execution.

The problem we tackle here is to automatically syn-
thesize such a strategy: we discuss two approaches,
namely implicitly and explicit strategies.

Implicit strategy execution

{ TNU = (T, Vo, (V) W(Ke, V) }

TN =
[(£.,0.0, (T, 5)) N Sofver |

Plant

Fig. 6. Schematic view of implicit strategy mechanism. The strategy
is repeatedly executed once a situation is obtained by estimating the
relevant parameters in the Plant. The output of the strategy is a con-
trollable schedule (i.e. an assignment T. to all the controllable time
points). The implicit strategy works by “projecting away” the uncer-
tainty in the TNU: the uncontrollable durations 37” are substituted
with the actual values of the situation S. Then, a TN is obtained
and is solved using a TN solver, yielding the assignment (T%) to the
controllable time points.

A way of obtaining a strategy for a weakly control-
lable TNU is given by definition 3 and depicted in fig-
ure 6: when a situation S is read’, we eliminate the
uncertainty by substituting the uncontrollable duration
variables in the TNU formulation with the values ob-
tained from the situation (obtaining a TN that is the
projection of the TNU). Then, we solve the resulting
temporal problem, that is now without uncertainty, and
return the assignment to the controllable time points
(indicated as T) for execution. Formally, given the en-
coding of a TNU (7., Y,,I(Y,), ¥(T.,Y,)) and an
assignment to all the uncontrollable durations S ful-
filling T'(S) (a situation), we can find an assignment
to the controllable variables T; by finding a model for
the formula W (7., S). This strategy requires a solver to
be executed once the situation S is known. In practice,
we can implement this idea using any SMT solver by
searching for a model for ¥(T,, S). However, this ap-
proach (called IMPLICIT-SMT) requires one to solve
a separate SMT problem for each situation.

The main drawback of the implicit approach is the
requirement of on-line reasoning. In fact, once the sit-
uation is known, a solver is invoked to discover the as-
signment for the controllable time points. Solving the
TN resulting from the projection of a TNU is hard in
general. If the problem belongs to the STNU problem
class the resulting STN can be solved in polynomial
time, but for the general case of DTNU, the projection
results in a DTN that is, in general, NP-hard [53]. In

55 is a vector of | Yy | rational numbers, one for each uncontrol-
lable duration.

12 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

addition, having a solver as part of the run-time may
require much more expensive platforms.

We avoid the burden of on-line reasoning by pro-
viding techniques for the synthesis of explicit strate-
gies as functions that are simple and fast to execute.
Consider the formalization in proposition 2. Interest-
ingly, we can apply skolemization [35], thus replacing
the existential quantifier by means of a fresh function
symbol: i.e.

VY, T(Y,) — U(f(Y.),Y.). (8)

We transform the inner existential quantifier into a
function f that models the weak strategy for the prob-
lem. In fact, in equation (8), the interpretation of the
function f is exactly a strategy that solves the problem.

In the following, we focus on two types of explicit
strategies: linear strategies, where each controllable
variable is computed as a linear combination of the un-
controllable durations; and piecewise-linear strategies,
where different linear strategies are executed depend-
ing on the input situation. From here on, we assume
the encoding (fc,?u,l“(}_}u), \Il(fc,}?u)> of a TNU is
given. In general, a weak strategy is a function that
maps each assignment to uncontrollable durations sat-
isfying ['(Y,,) (i.e. each situation) into an assignment
to the controllable time points, such that all the free
constraints are satisfied.

Definition 7. A weak strategy for a TNU is a func-
tion f : RIYul — RITel defined for every point 17” in
T(Y,) and such that (f(Y,),Y,) holds for every Y,
inT(Y,).

Note that, this definition does not impose any con-
straint (e.g. linearity, continuity) on f other than be-
ing a function. We modeled a weak strategy as a sin-
gle function f : Rl — RITel but we can equiv-
alently consider a set of functions fi,..., f\ﬁ\ each
computing a schedule for a single controllable time
point given the situation. The two formalizations are
equivalent because if there exists a unique function f,
we can obtain the set of function by projection of f
and vice-versa.

A linear strategy is such that the value of every con-
trollable time point is obtained as a linear combination
of Y,. Let n = |T.| and m = |T,|. A linear strategy
can be represented as a matrix A of real coefficients of
size n X m and a vector ¢ of size n. Every controllable
variable is scheduled according to a linear function of
the uncontrollable durations. The strategy f (}7“) can

be then expressed as A - 17“ + Cin which each b; € T;
can be computed as A; 1ya, + ... + AimYm + G-
Therefore, the matrix A must have one column for
every duration and the vector ¢ contains the constant
additive terms. The problem of synthesizing a linear
strategy is then equivalent to the problem of finding a
suitable matrix A and vector c.

A more general form of strategy is the piecewise-
linear strategy, that is the composition of a finite num-
ber of linear strategies. A piecewise-linear strategy is
defined by cases over a finite partition of the situations
(a partition of the region represented by I'(Y,,)). For
each case we have a linear strategy that is a valid weak
strategy for that subset of the situations. We can com-
pose these linear strategies by first checking in which
element of the partition the observed situation belongs,
and then applying the corresponding linear strategy. In
this setting, a linear strategy is a particular case of a
piecewise-linear strategy in which we have a partition
of cardinality one.

Definition 8. A piecewise-linear strategy is a function

LYV it (V)
F(V) = ff(m else if n* (V)
fE(Y) elseifn®(Ya)

where each f' is a linear strategy and ni(?u) are sub-
regions of T(Y,) such that T(Y,) C (Uf:1 7 (V).

Linear strategies are very useful in practice: they are
compact to represent and easy to evaluate. In fact, a lin-
ear strategy can be represented using just a matrix and
a vector of real numbers; moreover, given an assign-
ment to the uncontrollable duration, we can compute
the schedule for the controllable variables by means
of a single matrix multiplication. In general, unfortu-
nately, a weakly controllable TNU is not guaranteed to
have a linear strategy. In fact, even the STNU class of
problems is not guaranteed to admit such a strategy for
every weakly controllable instance. The following the-
orem (proven in [16]) states that there exists a weakly
controllable STNU without any linear strategy.

Theorem 1. There exists an STNU that is weakly con-
trollable and does not have any linear strategy.

On the contrary, we proved that a piecewise-linear
strategy always exists for any weakly controllable
TNU.

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 13

Strategy Type
Linear Piecewise-Linear
Convex VERTEXENCODING SIMPLEXESDECOMPOSITION
(STNU) INCREMENTALWEAKENING LAZYEXPANSION
Disjunctive SKINCRAWLER
NRA ENCODING
(DTNU) CONVEXREGIONENUMERATOR

Table 2
Overview of the developed algorithms.

Theorem 2. For any given TNU P, if P is weakly con-
trollable, then P admits a piecewise-linear strategy.

We are interested in generating strategies that can be
efficiently executed once the situation is known. Given
this requirement, linear strategies are very helpful, be-
cause they are compact (the size is quadratic in the
number of time points) and can be executed by per-
forming a linear computation in the size of the strat-
egy. Piecewise-linear strategies are also helpful be-
cause they can be executed in linear time in the size of
the strategy as they require only a case switch before
applying the linear executor.

Strategy Extraction. We now address the problem of
synthesizing weak strategies. We classify the problem
along two dimensions, distinguishing between (i) con-
vex (STNU) vs. disjunctive (DTNU) temporal prob-
lems and (ii) linear vs. piecewise-linear strategies. Ta-
ble 2 summarizes this classification and indicates the
algorithms we developed for each problem class.

All the algorithms assume that the given problem
is weakly controllable, but it is not known in advance
whether the problem admits a linear strategy. Thus, the
algorithms listed in the “Linear” column of table 2 re-
turn L in case no linear strategy exists. The others are
guaranteed to find a piecewise-linear strategy.

We do not describe the algorithms in detail here, we
only give an overview of the ideas; all the details and
the pseudo-codes for the algorithms are thoroughly
presented in [16].

The algorithms for extracting linear strategies work
by trying to synthesize the matrix of coefficients A
and the bias vector ¢. VERTEXENCODING encodes the
problem for an STNU an a QF_LR.A formula using
an SMT variable for each element of A and ¢ and im-
posing an exponential number of constraints, while the
NRA ENCODING deals with DTNUs using a quan-
tified non-linear formula using an SMT variable for
each element of A and ¢ and an SMT variable also
for the elements of Y,. These approaches migth fail
to build a linear strategy because it might not exists
even for weakly controllable networks. The INCRE-

MENTALWEAKENING algorithm is an optimization of
the VERTEXENCODING that incrementally builds the
strategy trying to limit the number of variables ob-
served by the strategy.

The approaches for building piecewise-linear strate-
gies work by splitting the region of the uncontrollables
and by applying linear strategies to the obtained re-
gions. SIMPLEXESDECOMPOSITION decomposes the
uncontrollable space in simplexes and for each of
them a linear strategy is constructed; we proved that
such a linear strategy always exists in [16]. LAZYEX-
PANSION optimizes this approach by extending a lin-
ear strategy obtained by the SIMPLEXESDECOMPOSI-
TION approach even outside the original simplex, pos-
sibly limiting the number of iterations needed to cover
the uncontrollable space. SKINCRAWLER constructs a
piecewise-linear strategy for a DTNU by considering
the skin of the polyhedra that are the geometric in-
terpretation of the free constraints. Finally, the CON-
VEXREGIONENUMERATOR algorithm decomposes a
DTNU in a number of STNU and for each of them
it applies a piecewise-linear strategy construction. We
highlight that these algorithms provide a correct weak
strategy for the problem at hand, but no effort is put
into minimizing the size of the strategy itself. This op-
timization topic is a clear objective for future research
that is discusse din more detail in section 8.

Experimental Results. In order to empirically test the
effectiveness of the proposed approaches, we imple-
mented a tool for deciding weak controllability and
synthesizing weak strategies for a TNU. Our tool reads
a TNU problem, and applies our portfolio of encodings
and algorithms. The tool can synthesize explicit strate-
gies as C++ functions (taking in input a situation), that
can be compiled and linked in any program.

We tested the decision problem encoding over a
set of 2442 randomly generated DTNU, TCSNU and
STNU instances, with a number of time points rang-
ing from 6 to 20000. For the evaluation of strategy-
extraction techniques, we used 1354 weakly control-
lable STNU benchmarks and 2112 weakly controllable
DTNU instances ranging from 4 to 50 time points.

We remark that, as far as our knowledge is con-
cerned, there are no competitor tools or solvers able
to deal with the weak controllability decision problem,
nor with the synthesis of a weak strategy. Thus, in the
experimental evaluation, we do not compare with any
other tool or approach.

The results of checking the decision problem over
the set of TNUs are plotted in figure 7. The cactus

14 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

[[
-+ Weakly Controllable | X Not Weakly Controllable |
| e —

\
30 10 MO
L

s 10

s w0
Assumption—Extraction

Cumulative time (sec)
Assumption-Extraction

s 1

Direct
- = = Assumption-Extraction
-4 0 e Inverted

01

T T T -
0 500 1000 1500 2000

01 s 1 s o 10 20 10 Mo

Number of solved instances Inverted Inverted

(@) (W) (©)

Fig. 7. Results for the decision problem encodings solved using the Z3 SMT solver. Figure (a) reports the cumulative time (in logarithmic scale)
cactus plot; Figures (b) and (c) show the scatter plots of INVERTED vs. ASSUMPTION-EXTRACTION encodings divided in weakly controllable,
and not weakly controllable, respectively. The TO line denotes the instances that reached the time out, while MO indicates instances that hit the

memory limit.

plot (a) reports, in the horizontal axis, the number of
solved instances and, on the vertical axis, the cumu-
lative time, in logarithmic scale, taken by the SMT
solver for each encoding. The figure highlights the fact
that Z3 performs much better when the ASSUMPTION-
EXTRACTION encoding of the problem is considered:
in fact, this approach is able to solve, in less time,
a higher number of instances with respect to the IN-
VERTED and DIRECT encodings. In figures 7b and 7c,
we reported the scatter plots comparing the perfor-
mances of the ASSUMPTION-EXTRACTION with the
INVERTED encodings, distinguishing between weakly
controllable and non weakly controllable instances.
We note that, in the weakly controllable case, the
ASSUMPTION-EXTRACTION encoding outperforms
the INVERTED encoding in most of the benchmarks.
For non weakly controllable instances, the two encod-
ings perform similarly in terms of speed. However, the
INVERTED encoding is able to solve 86 instances that
are unsolvable by the ASSUMPTION-EXTRACTION
encoding due to the imposed memory limit.

The evaluation results for STNU strategy-extraction
techniques are reported in figure 8. The plot consid-
ers only those benchmarks that admit a linear strat-
egy, and compares the four different approaches. The
plot clearly shows that for linear strategies, the IN-
CREMENTALWEAKENING approach outperforms all
the others. The SIMPLEXESDECOMPOSITION method
quickly explodes due to the factorial complexity of
simplexes enumeration. Although the techniques for
piecewise-linear strategy extraction are penalized as

1000 10000
I I

Cumulative time (sec)
100
|

———— SimplexesDecomposition
- - - ExtremalEncoding
~~~~~~ IncrementalWeakening
- == LazyExpansion
- — — - SkinCrawler
1 T T T T T T T
0 200 400 600 800 1000 1200 1400

Number of solved instances

Fig. 8. Results for STNU linear strategy extraction problem: we plot-
ted the cumulative cactus plot of the strategy extraction time for the
different algorithms we propose.

they are strictly more general than the others, the plot
shows that LAZYEXPANSION approach is much faster
than the SIMPLEXESDECOMPOSITION.

In figure 9 we plotted the number of “pieces” of the
strategies for the LAZYEXPANSION and SIMPLEXES-
DECOMPOSITION methods. The plot shows that, al-
though for small problems the LAZYEXPANSION ap-
proach generates additional, unneeded “pieces”, when
the problem size increases the number of “pieces”
identified by the LAZYEXPANSION method is much
smaller than for the SIMPLEXESDECOMPOSITION
one. In general, the LAZYEXPANSION approach has a
huge gain in performance and in strategy size.



A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 15

500
I

100 200

50

Lazy

:
8 $ 3 +
R o : i
+
. : i
o I ¥ i
+ o+ T+ + + +
+ .7+ + + +
~ o + + + +
-4 ¥+ + + + +
m— T E— E— T T
1 2 5 10 20 50 100 200 500

Simplexes

Fig. 9. Results for STNU linear strategy extraction problem: we
compared the number of pieces for piecewise-linear algorithms ex-
pressed as the number of split regions.

In figure 10 we report the results on the DTNU
problem class. The plots show that the CONVEXRE-
GIONENUMERATOR algorithm performs better than
the SKINCRAWLER one. This is because of two main
reasons. First, the SKINCRAWLER approach solves
a costly minimization problem and has to traverse
all the faces of the space of free constraints while
the CONVEXREGIONENUMERATOR algorithm ap-
plies the cheap LAZYEXPANSION approach to each
convex region that is generated by a single call to the
SMT solver. Second, the linear strategy generated by
the LAZYEXPANSION approach is generalized and ap-
plied wherever possible, therefore if the problem al-
lows for a linear strategy the CONVEXREGIONENU-
MERATOR algorithm is able to quickly synthesize it,
while the SKINCRAWLER has to enumerate enough
faces to cover the entire uncontrollable space.

There is an interesting peak on the rightmost part of
the CONVEXREGIONENUMERATOR curve in the plot.
This is due to a particular instance that is solved in
287.28 seconds generating a strategy with 3750 pieces
(thus using the same number of iterations to termi-
nate). This is one example in which the splitting done
by the LAZYEXPANSION approach gets lost in split-
ting the uncontrollable space in simplexes.

We proposed a number of approaches to synthe-
size weak strategies arguing that their execution is
practically more efficient than solving the individual
problems without uncertainty obtained by projecting
the uncertainty away. We provide experimental evi-
dence supporting this claim on a number of STNU and
DTNU instances. For each TNU in our benchmark set,
we randomly generated 1000 situations, represented as
complete assignments for the uncontrollable durations.

We implemented two variations of the implicit ap-
proach using the MATHS ATS SMT solver. In addition,
we considered three ways to compile in machine code
the problem-specific strategies generated by our al-
gorithms. We translated the linear or piecewise-linear
strategy synthesized by any of our algorithms into C++
code. The translation for linear strategies is straight-
forward: we create a function that takes in input a nu-
meric value for each uncontrollable duration and we
compute the output of the strategy. Given a piecewise-
linear strategy, we translate it using a sequence of if
statements, one for each piece. The condition of each
if is the transposition in C++ syntax of the piece con-
dition. Each conditional statement returns the value
computed by the translation of the linear strategy rel-
ative to the particular piece. We used three different
datatypes to represent numeric values and perform the
arithmetic operations. In particular, we used the (finite-
precision) C++ float and double and the GNU-
MP library for arbitrary precision arithmetic [28]. The
float and double datatypes are a finite-precision
representation of rational numbers. As such, they suf-
fer from both numeric stability and rounding problems
that may, in principle, cause unsoundness in the strat-
egy output. On the other hand, GNU-MP is the same
library employed by the MATHS ATS SMT solver and
does not suffer from any kind of numeric stability or
rounding problems.

Figure 10c shows the results of the comparison:
in our experiments the explicit strategies outperform
projection-based implicit strategies. IMPLICIT-SMT-
INCREMENTAL performs better than IMPLICIT-SMT,
thanks to the incrementality feature of the SMT solver,
but the explicit strategies bring a significant speedup
on all the instances. Arbitrary-precision arithmetic
(that fairly compares with the SMT precision) outper-
forms projection-based techniques by two orders of
magnitude. The compiled strategies with native C++
datatypes perform even better, but the numerical stabil-
ity problems can, in principle, lead to unsound results.
We checked the output of each technique on each sit-
uation in order to assess the soundness, but all the re-
sults were correct. Nevertheless, studying under which
condition we can guarantee that such finite-precision
implementations are correct is subject of future work.
We highlight that the compilations using native C++
datatypes can be translated to Boolean circuits, and
this opens for the possibility of creating very efficient
hardware implementations of these strategies.



1000 10000

Cumulative time (sec)

- — = Skin Crawler

Convex Region Enumeration

T
500

T T
1000 1500

Number of solved instances

(@)

T
2000

Skin Crawler

200.0

50 100 200 50.0

05 10 20

0.2

Cumulative strategy execution time (sec)

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

- C++ strategy (GMP)

Implicit-SMT
Implicit-SMT-Incremental

C++ strategy (double)
C++ strategy (float)

- B
L

°
s ©
2 B
L

0.001

T T
02 05 10 20

T T T T T T T
50 100 200  50.0 200.0

Convex Region Enumeration

(W)

1000 2000 3000

Number of solved instances

(©)

Fig. 10. Results for strategy extraction problem in the DTNU problem class (a-b). In (a) we plotted the cumulative cactus plot of the solving time
for the CONVEXREGIONENUMERATOR and the SKINCRAWLER algorithms while (b) is a scatter plot of the data. Results for strategy execution:
for each problem, the generated strategy is executed on 1000 randomly generated situations (c). the plot considers all the STNU and DTNU
randomly generated problems. The cactus plot shows the number of solved instances on the x axis and the accumulated time to solve them in the

y axis.
6. Dynamic Controllability

The last kind of query that can be addressed given a
TNU is dynamic controllability. Dynamic controllabil-
ity is concerned with the existence of a strategy for ex-
ecuting the controllable time points that depends only
on past observations of the outcomes of uncontrollable
durations, and that guarantees that all relevant con-
straints will be satisfied no matter how the durations of
the contingent links turn out. Essentially, a TNU is dy-
namically controllable if there exists a weak strategy
that, in order to decide a controllable time point at time
k, does not depend on any observation past time k. In
order to keep the discussion limited in scope, we do
not provide a formal definition of dynamic controlla-
bility here: such a definition needs the introduction of
several formal concepts. The interested reader can see
our previous work in [12] for a thorough formalization
of the dynamic controllability for the DTNU case.

Polynomial algorithms to check the dynamic con-
trollability of STNUs [33,43,44,45] and run-time al-
gorithms for generating an execution strategy in real-
time [31,32] have been presented in the literature.
Although STNUs have been successful in some do-
mains, many other domains require a richer set of
constraints and features. Disjunctive constraints often
arise in practice, for example, when two activities can-
not be done simultaneously, but a dynamic controlla-
bility checking algorithm has only been presented for
a subclass of DTNUs [55].

In this section, we present the work we contributed
in the field of dynamic controllability. The contents
of this section are derived from our previous papers
[11,12,13,19]. We first define a syntax for express-
ing dynamic strategies (that is shown to be sufficient
for any DTNU in [19]) and propose an algorithm to
validate a given strategy against a TNU. Second, we
present a novel approach for checking the dynamic
controllability of DTNUs by translating the dynamic
controllability problem into a reachability game on a
Timed Game Automaton (TGA) [39]. The reachability
game can be solved using off-the-shelf software that is
able to synthesize a viable execution strategy or deter-
mine that no such strategy exists [5]. This results in the
first sound-and-complete checking algorithm for the
dynamic controllability of DTNUs. The encoding of
such networks into TGA highlights important theoreti-
cal relationships between the different kinds of tempo-
ral reasoning frameworks and the TGA framework.

Third, we exploit the ideas behind the TGA encod-
ing to develop a dedicated solving algorithm for the
DTNU problem class. The algorithm is able to synthe-
size a strategy in form of an executable program. Fi-
nally, we present a comprehensive experimental eval-
uation of the proposed approaches.

Strategy Language. In the practical sense, the con-
cept of dynamic strategy for a TNU is argument of dis-
cussion. Existing approaches that solve the dynamic
controllability problem, produce strategies expressed
as constraint networks that need to be scheduled at run-



A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 17

time by an executor. These networks encode a possi-
bly infinite number of executions, but require a con-
straint solving algorithm running on-line with the sys-
tem. This may or may not be acceptable, depending on
the application at hand.

Some works aimed at reducing the amount of on-
line reasoning as much as possible [44]. Here, we want
to follow the idea we introduced for weak controlla-
bility: we want to automatically synthesize executable
strategies. We define the following language to com-
pactly express strategies in a readily executable form.

Definition 9 (Strategy Syntax). A strategy o is recur-

sively defined as follows.

— noop is a strategy;

—w(p,er : o1, e : On, 1 04) is a strategy
where 1 is a time region, each e; € T, and each o,
is a strategy

— s(b); o’ is a strategy where b € T, and ¢’ is a strat-
egy.

We defined a single wait operator that waits for a
condition ¢ to become true. Conditions are expressed
as time regions defined over a set of clocks T’ = {7 |
x € T}. Those are borrowed from the literature of
Timed Automata [2,39]. For the sake of this paper, it
suffices to say that given a set of clock variables X,
we call “time region” any formula expressed by the
following grammar:

pu=T|L|Zwk|T-gak|dAS| OV |0

where e {<, <, >, >, =}. We use a clock for each
time point (controllable or uncontrollable). All the
clocks start from time 0 and evolve as time passes. We
encode the constraint that a clock is reset to 0 when the
corresponding time point is executed. In this way, each
clock measures the time passed since the correspond-
ing time point was scheduled. For example, a time re-
gion x —y < 2 Az = 3 indicates that 3 time units
ago (at time ¢t — 3),  was scheduled and y has been
scheduled at least 1 time unit ago.

A wait action can be interrupted by the observation
of an uncontrollable time point or when the waited
condition becomes true (represented by the - symbol).
For each possible outcome, the strategy prescribes a
behavior, expressed as a sub-strategy. For example, if
while executing a strategy w(,e1 : 01,e2 : 02,
o) the time point es is observed, the wait is termi-
nated and o5 is immediately executed.

In addition to wait statements, we also have the con-
catenation (s(b); o) construct that prescribes to imme-

diately schedule the b time point (we assume no time
elapses), and then proceed with the strategy o’. The
noop operator is a terminator signaling that the strat-
egy is completed.

Theorem 3 (Sufficient Syntax). A DTNU is dynam-
ically controllable if and only if it admits a solution
strategy expressible as per definition 9.

This strategy syntax is similar to a loop-free pro-
gram. In practice, one needs to represent the program
allowing common strategies in different branches to be
shared to avoid combinatorial explosion of the strategy
size. In order to simplify the exposition, we keep the
simpler tree representation. The structure of the pro-
gram explicitly represent the different branches that
the strategy may take: each computation path from the
beginning of the strategy to noop is a way of schedul-
ing the time points in a specific order.

A strategy o needs two characteristics for being a
solution to the dynamic controllability problem: dy-
namicity and validity, defined as follows.

A strategy o is dynamic if it never observes fu-
ture happenings and is valid if it always ends in a
state where all the controllable time points are sched-
uled and all the free constraints are satisfied, regard-
less of the uncontrollable observations. Using the strat-
egy syntax in definition 9, dynamicity can be checked
syntactically: it suffices to check, for each branch of
the strategy, that each wait condition ) is defined on
time points that have been already started or observed.
Formally, this can be done by recursively checking the
free variables of each time region v, as follows.

dyn(P,noop) =T

dyn(P,s(b);0’) = dyn(P U {b},d’)

dyn(P,w(i,e1 : 01, -+ eyt 0y, 04)) =
(FreeVars(y) C P) Adyn(P,o4) A
/\?:1 dyn(P U {ei},0:)

Proposition 3. A strategy o is dynamic if and only if
dyn(B,o) =T.

Intuitively, P keeps track of the time points that hap-
pened in the branch under analysis, and the check en-
sures that no time point outside P is used as a wait
condition.



18 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

Strategy Validation. 'We now focus on the problem
of validating a given strategy using the immediate-
reaction semantics. We first present a search space that
encodes every possible strategy for a given DTNU.
The search space S is an and-or search space where the
outcome of a wait instruction is an and-node (the re-
sult of a wait is not controllable by the solver), while
all the other elements of the strategy language are en-
coded as or-nodes (they are controllable decisions).
The search space is a directed graph S = (V, E'), where
FE is a set of labeled edges and each node in V' is a tu-
ple (P,w, $,1) where P € 27 is a subset of the time
points representing the time points that already hap-
pened in the past, w is a Boolean flag marking the state
as a waiting state, while both ¢ and ¢ are time regions.
¢ represents the set of temporal configuration in which
the state can be; v is set only in and-nodes to record
the condition that has been waited for. The graph is
rooted in the node Init = (), L, T, L ). The transition
relation defining the allowed moves in the space is F,
defined as follows:

— (P, 1,6, 1) " (PU{b), L, p(6,5), L) with b €

T\ P;

- <P’ 1,9, J—> M} <P’ T7w(¢>¢)7¢>;
- (P, T,¢,4) = (PU{e}, L p(¢,e) A uc(e), L)

where e € 7, \ P and a(e) € P;

~ (P, T,¢,00) = (P, L 4, 1).
Nodes having w = L are considered or-nodes, while
the others are and-nodes. Intuitively, the first rule al-
lows the immediate start of a controllable time point
if we are not in a state resulting from a wait. The sec-
ond rule allows the solver to wait for a specific condi-
tion 1), the resulting state is an and-node because the
outcome of the wait can be either a timeout () or an
uncontrollable time point. The last two rules explicitly
distinguish these outcomes. We remark that, when a
time point x is scheduled or observed, the correspond-
ing clock 7 is reset and the set P keeps record of the
time points that have been scheduled or observed.

Given a time region ¢ we define the time region that
specifies the waiting time for a condition % as a time
region w(¢, ) = ¢/ A—(v/). This is the set of time
assignments resulting from starting a wait for condi-
tion v starting from any assignment that is compatible
with condition ¢.

For each uncontrollable time point e, we define the
uc(e) time region as \/; hepale) = LA ale) < u
where (a(e), B,e) € L. Intuitively, uc(e) is the por-
tion of time in which the uncontrollable time point e
might be observed, according to the contingent links.

We remark that the time region only depend on the
clock corresponding to the activation time point «/(e)
because clocks measure the time since the correspond-
ing time clock happened. In fact, this is a translitera-
tion of a contingent link into a time region. This search
space directly mimics the structure of our strategies,
but is infinite due to the infinite number of conditions
that can be waited for. Nonetheless, this space is con-
ceptually clean and very useful to approach the valida-
tion problem.

The procedure for validating a strategy is reported
in [19]: the algorithm navigates the search space S,
by applying the strategy prescriptions (thus finitizing
the search) and checking that each branch invariably
yields to a state where all the free constraints are satis-
fied and all the time points are scheduled. The proce-
dure executes a strategy starting from Init; then it re-
cursively explores the search space enforcing the con-
trollable decisions of the strategy o in or-nodes and
branching to explore all possible uncontrollable out-
comes in and-nodes. The algorithm takes a number of
steps that is linear in the size of the strategy because at
each step the strategy gets shortened.

Proposition 4. The validation procedure is sound and
complete for the immediate-reaction semantics.

Strategy Synthesis. Checking dynamic controllabil-
ity and synthesizing dynamic strategies for the DTNU
problem class were open problems in the literature. We
addressed this issue by providing a general schema to
approach the dynamic controllability problem for the
whole DTNU network class. The idea is to reduce the
problem to a Reachability Game on a Timed Game
Automaton (TGA) [39] obtained via a linear encoding
procedure. Since the reachability problem for TGA is
decidable and algorithms have been developed to solve
this problem, this reduction constitutes a viable and
novel solution approach for the open problem of dy-
namic controllability of DTNU. Moreover, this tech-
nique has been extended to also deal with discrete non-
determinism [12].

We do not report the formal encoding here (the de-
tails have been published in [11] and [12]), for the sake
of this paper it suffices to say that the encoding is linear
in the size of the TNU and that the resulting TGA sat-
isfied the reachability property if and only if the TNU
is dynamically controllable. Moreover, each TGA con-
troller guaranteeing the reachability property yields a
valid dynamic strategy.

In addition to the TGA encoding, we developed a
direct synthesis technique for DTNU. Differently from



A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 19

the TGA encoding, we directly synthesize dynamic
strategies that are valid by construction without resort-
ing to external TGA solvers. The details on this syn-
thesis technique can be found in [19]. Intuitively, we
combined our TGA encoding with the TGA solving
algorithm in [9] removing useless checks and gener-
ating the search space on-demand. Moreover, we ex-
ploited the structure of the TNU to guide the search
in the space of the reachability game and we devised
an SMT-based algorithm to effectively early-prune the
search. Finally, we devised two flavors of the algorithm
one that considers different orderings as different TGA
locations and one that disregards the ordering. The im-
portance of the algorithm is twofold: first it performs
much better than state-of-the-art TGA solvers applied
to our TGA encoding, second it directly outputs an ex-
ecutable dynamic strategy using the syntax provided in
definition 9.

Experimental Results. We evaluate the merits of the
TGA encoding and the direct synthesis technique on
a number of DTNU benchmarks, both considering the
immediate-reaction semantics.

We implemented the DTNU-to-TGA using an au-
tomated encoder that takes in input a DTNU and
outputs a TGA in the input language of the state-
of-the-art TGA solver Uppaal-TIGA [5]. We imple-
mented both the flavors of the DTNU encodings dis-
cussed in [11]. In the following, we refer to the DNF
encoding as TIGA-DNF and to the NNF encoding
as TIGA-NNF. We also implemented the valida-
tion and synthesis algorithms in a tool called PYDc.
We analyze four versions of the synthesis algorithm:
UNORDERED-NOH, that is the synthesis algorithm
with no pruning; ORDERED-NOH, that is the synthe-
sis algorithm with no pruning that considers ordered
states, UNORDERED-SMT and ORDERED-SMT that
use incremental SMT solving for pruning the unfeasi-
ble paths. The benchmark set is the same we used for
weak controllability strategy synthesis.

The results are shown in figure 11. We first no-
tice that the direct synthesis techniques are vastly su-
perior to the TGA-based approaches as shown in the
cactus plot of figure 11a. The direct synthesis algo-
rithm is able to solve 2543 instances, while the best
TGA based approach can only solve 799 instances.
We observe run-times differences between the two ap-
proaches of up to three orders of magnitude, as shown
in figure 11b.

The cactus plot in figure 11a, also shows that the
SMT-based pruning yields a significant performance

boost, both for the unordered case (from 1531 to 2289
solved instances), and for the ordered case (from 1552
to 2543). Nonetheless we observe how the pruning is
much more effective for the ordered case, thanks to the
additional strength of the pruning constraints.

Finally, the scatter plot in figure 11c shows that
the ordered case is almost always superior to the un-
ordered one when the SMT pruning is enabled. Further
inspection shows that UNORDERED-SMT explores an
average of 2447.9 symbolic states, compared to the
95.8 of ORDERED-SMT. In the latter case, the order-
ing information allows the SMT solver to detect un-
feasible branches much earlier than in the unordered
case.

7. Related Work

In the literature, many works focused on the STNU
framework to model and reason on temporal uncer-
tainty, with very few approaches being able to deal
with TCSNU or DTNUs. In this section we provide
an overview of the state-of-the-art concerning tempo-
ral networks with uncertainty.

STNUs have been successfully used in many appli-
cation contexts [20,26,46]; in general, they are use-
ful to model a fixed set of activities or tasks (some of
which having uncontrollable duration) subject to con-
straints. For example, STNUs can be used to represent
temporal plans in Al planning.

The STNU framework has been presented in [59],
where the authors prove that the strong controllability
problem is tractable and give an algorithm for reducing
any given STNU to an STN having only controllable
time points, in such a way that any consistent schedule
for the STN is a solution for the strong controllability
problem. This approach is based on removing all the
uncontrollable time points and all the contingent links,
and to substitute each occurrence of an uncontrollable
time points in the free constraints according to a sub-
stitution table. In our SMT-based approach we recon-
struct this result when using the eager for-all elimina-
tion encoding extending it to the case of TCSNU. The
strong controllability problem for DTNU has been ad-
dressed in [50]. In this work, we developed several en-
codings into the SMT framework that are experimen-
tally shown to be much more efficient than the theoret-
ical technique pioneered in [50].

Concerning weak controllability, [59] gives a co-NP
algorithm for deciding the problem for STNUs, but no
synthesis algorithm for weak strategies is present in the



20

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

600 o o pas

@
g
8
L
+
PSRN A
AR

Time (sec)
TIGA-DNF

-—-— TIGA-NNF
— — - TIGA-DNF

== Unordered-NoH
Ordered-NoH
Unordered-SMT
Ordered-SMT

Unordered-SMT

T T
1000 1500 2000 2500

Number of solved instances

(@)

10

Ordered-SMT

(W)

300 600

300 600 05 1 5 10 50 100
Ordered-SMT

(©)

50 100

Fig. 11. Results for the experimental evaluation. The logarithmic scale cactus plot in (a) shows the different approaches (with and without SMT
pruning) against the theoretical encoding solved by the Uppaal-TIGA TGA solver. The scatters compare the ordered SMT approach with the

theoretical encoding (b) and with the unordered solver (c).

literature. We extended these results giving construc-
tive algorithm that are able to produce weak strategies
and we also tackled the full DTNU problem class.
Dynamic controllability has been widely studied
for the STNU class. Starting from the original for-
mulation in [59] that proposed an exponential game-
based solution, Morris, Muscettola and Vidal showed
a pseudo-polynomial algorithm in [46]. Then, Morris
and Muscettola refined the idea into a polynomial al-
gorithm [45] that has been further optimized by Morris
in [43] obtaining an O(n?) algorithm. The semantics
of dynamic controllability has been studied by Huns-
berger [29] that proposed a view in which the solu-
tion strategy cannot react to uncontrollable decisions
in zero time, but needs a non-null time to elaborate
and react to the observation. These works are based on
the definition of enriched networks of constraints that
are propagated till a fixed point is reached following
carefully designed rules. If the network does not en-
ter in an inconsistent state, then the problem is prov-
ably dynamically controllable but no strategy synthesis
is performed by these algorithms. [43] and [33] show
how to write a reasoning algorithm that takes in in-
put a propagated network and decides when to exe-
cute controllable time points at run-time. The problem
with such algorithms is that they propagate constraints
at run-time each time a time point is scheduled or ob-
served. The complexity of the technique is polynomial.
Finally, we mention [44] in which Morris proposed an
algorithm for transforming a dynamically controllable
STNU in an executable form (called dispatchable) that
can be used for on-line execution with a minimal rea-

soning effort. No algorithms or techniques exist in the
literature for solving the dynamic controllability prob-
lem of the DTNU problem class. [55] presents an algo-
rithm for dynamic controllability that is limited to the
TCSNU class and is based on a Meta-CSP exploration
and a decision procedure for the weak controllability
of DTNUs. Both these approaches are mainly theo-
retical and are limited to the decision problem. This
means that they are not concerned with the synthesis of
a strategy (in our execution model, a plan) for schedul-
ing the time points, but only in verifying that such a
plan exists at all. In our approach, we followed the idea
of exploiting an encoding in TGA pioneered by Vi-
dal [56,57] by providing a polynomial sized encoding
that also works for the DTNU case and by construct-
ing a dedicated solving algorithm that improves the
performance over a general-purpose TGA solver. Our
approaches are constructive: they produce a closed-
form execution strategy if they find that the input net-
work is dynamically controllable. Finally, other ap-
proaches exploited the relation between TGA and dy-
namic controllability of temporal networks. In particu-
lar [49] and [40] studied this relationship in the context
of flexible plans, while [1] explores the use of TGA
for the problem of planning (not scheduling) using dy-
namic controllability.

8. Future Directions

In this paper, we presented our efforts pursuing a
more comprehensive coverage of the problems arising



A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 21

in the context of temporal uncertainty for temporal net-
work scheduling. We believe that the techniques we
presented can serve in many practical applications and
we actively work in pushing these techniques in re-
search projects. However, in this work we focused on
covering the different controllability queries for DTN
disregarding several orthogonal aspects that might be
useful in practical applications. In this section, we
elaborate on different directions to extend this work,
motivating the expected impact and discussing possi-
ble ideas.

Discrete Non-Determinism. A natural extension is
to adapt the techniques to work also for the non-
deterministic case, i.e. when activities have unpre-
dictable effects on the world and these effects can be
used to express the constraints. An example formal-
ism in this setting is the Conditional Temporal Net-
work (CTN) [54] in which part of the constraints are
activated or de-activated depending on a Boolean, non-
deterministic run-time observation. With this respect,
we started working [12] by combining the disjunc-
tions of the DTNU framework with conditionals in the
CTN formalism, obtaining the Conditional Disjunc-
tive Temporal Problem with Uncertainty (CDTNU).
We extended the DTNU-to-TGA approach for solving
the dynamic controllability to this case. Dealing with
strong controllability in CDTNU is straight-forward
because we can project away the Boolean variables
as explained in [54] effectively reducing the problem
to the strong controllability of a linear-sized DTNU
suitable for our techniques. Weak Controllability is an
open problem when uncertainty is considered.

Optimality.  All the approaches we presented are con-
cerned in finding a solution for the controllability prob-
lems, in the from of a strong schedule or a strategy:
no distinction is imposed between solutions. An im-
portant direction to explore is the optimization of solu-
tions in order to find those that maximize some desired
property. This could be very useful in practice: for ex-
ample, one may look for the strategy that minimizes
the time-span while respecting all the constraints, re-
ducing the operational costs. For strong controllabil-
ity we envisage the possibility of exploiting our encod-
ing in QF _LR.A and apply an optimizing SMT solver
(e.g. [52]). For the other controllability levels the prob-
lem is open and less obvious. In particular, we believe
that the synthesis of optimal dynamic strategies could
be extremely useful in practice. Finally, for the case
of strategy synthesis there is a clear multi-objective di-
rection of optimization: on one hand one may want to

optimize the performance of the strategy in terms of
make-span or by prioritizing activities to be executed,
on the other hand one may want to minimize the size
of the strategy itself yielding the minimal number of
cases to be considered and the minimal memory foot-
print.

Resources. In the scheduling literature resource con-
straints are considered in many works. Temporal net-
works cannot directly express complex resource con-
straints like for example the consumption of fuel by
one activity or the workers needed to perform a task.
With this respect, some authors managed to encode
particular kind of resources in TNU [37], and an exten-
sion of the TN framework for resources has been pre-
sented [36]. Extending our scheduling techniques for
dealing with resources is possible, but presents some
challenges: in some parts of our reasoning we exploit
the fact that temporal constraints are limited to a spe-
cific form in QF_RDL, but we often use very ex-
pressive SMT theories, such as QF _LR.A, that can
accommodate at least some classes of resources. For
example, dealing with linear-continuous resources in
the context of strong controllability is possible exploit-
ing our encoding and adding the relevant resource con-
straints. However, a dedicated study is in order to un-
derstand the exact class of resources that can be ad-
dressed. Moreover, extending TNU adding resources
can be done in different ways (e.g. only activity dura-
tions can be uncertain vs. resources consumption and
production can be uncertain too) so we think that some
work is definitely need in this respect to define a proper
modeling framework and to address the different pos-
sible queries.

Partial Observability. 1t would be interesting to ex-
plore the middle-ground between strong and dynamic
controllability and between dynamic controllability
and weak controllability. In particular, an important is-
sue arising when non-determinism of any kind is con-
sidered is partial observability: in a real system, not all
the relevant variables are directly observed by appro-
priate sensors, either for cost and implementation rea-
sons or simply because some quantities are not mea-
surable in a sufficiently small time. Partial observabil-
ity limits the entities that can be observed and forces
the execution to take decision with incomplete infor-
mation. In the TNU framework we could divide uncon-
trollable activities in observable and non-observable
and provide only the observable durations to the ex-
ecutor. In this scenario, the dynamic and weak control-
lability problems get hybridized with strong controlla-



22 A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

bility: in fact, some of the time points become not ob-
servable and the relative constraints must be solved in a
“strong” way, the others can be observed and the strat-
egy can rely on this information to make decisions. A
first work in this direction is [6] in which the STNU
framework is extended with partial observability and
dynamic controllability is studied.

Planning. Finally, in this paper we focused on the
problem of scheduling DTNUs, but the basic motiva-
tion behind this study is temporal planning with tem-
poral uncertainty. In fact, just like TNs are used in tem-
poral planning as the natural back-end to assess the
consistency of partial plans, TNUs can be used to plan
in domains where temporal uncertainty arises. Follow-
ing this direction, we started a working on the prob-
lem of Strong temporal Planning with Duration Un-
certaity that is the lifting of strong controllability to
the planning level [18,42]. However, a lot of possible
extensions are still not covered by the current state-
of-the-art. the lifting of dynamic controllability to the
planning case has been partially addressed by planners
such as IxTeT [26] that generate plans in the form of
a STNU that is guaranteed to be dynamic controllable,
but the general problem of generating policies that are
allowed to observe the duration of activities (possibly
changing the course of actions) has never been studied.
Another interesting issue is to consider partial observ-
ability at the planning level when temporal uncertainty
is concerned.

9. Conclusion

In this paper, we presented a coherent vision on the
research line on temporal networks with uncertainty
we have been pursuing in the last years. Starting from
the temporal network scheduling problem with uncer-
tainty, we described the different queries arising in the
context of temporal uncertainty and we presented ded-
icated techniques that are able to answer the control-
lability queries for the expressive disjunctive case. Fi-
nally, we also detailed a number of future directions to
continue the line of research.

The PhD Thesis [41] from which this work is de-
rived also discusses a detailed assessment of the state
of the art concerning uncertainty in Planning and in
Scheduling and also presents some results in which the
technology explained in this paper is applied to the
case of planning.

Acknowledgments

I am profoundly grateful to Alessandro Cimatti (ad-
visor of the thesis) and Marco Roveri (co-advisor) for
their patient guidance during the PhD. Moreover, I
would like to thank David E. Smith, Minh Do and
Jeremy Frank for the support and guidance during the
internship period at NASA Ames. I am deeply grate-
ful and honored for the “Marco Cadoli” award granted
to this thesis by the Italian Association for Artificial
Intelligence.

References

[1] Yasmina Abdeddaim, Eugene Asarin, Matthieu Gallien, Félix

Ingrand, Charles Lesire, and Mihaela Sighireanu. Planning ro-

bust temporal plans: A comparison between CBTP and TGA

approaches. In Proceedings of the Seventeenth International

Conference on Automated Planning and Scheduling, ICAPS

2007, Providence, Rhode Island, USA, September 22-26, 2007,

pages 2-9, 2007.

Rajeev Alur and David L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183-235, 1994.

[3] Alessandro Armando, Claudio Castellini, and Enrico
Giunchiglia. SAT-based procedures for temporal reasoning.
In ECP, pages 97-108, 1999.

[4] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Ce-
sare Tinelli. Satisfiability modulo theories. In Handbook of
Satisfiability, pages 825-885. I0S Press, 2009.

[5] Gerd Behrmann, AgnAfs Cougnard, Alexandre David, Em-
manuel Fleury, KimG. Larsen, and Didier Lime. Uppaal-Tiga:
Time for playing games! In CAV, pages 121-125. 2007.

[6] Arthur Bit-Monnot, Malik Ghallab, and Félix Ingrand. Which
contingent events to observe for the dynamic controllability of
a plan. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pages 3038-3044, 2016.

[7] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,
Alberto Griggio, and Roberto Sebastiani. The MathSAT 4
SMT solver. In CAV, pages 299-303, 2008.

[8] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Ali-
aksei Tsitovich. The OpenSMT solver. In TACAS, pages 150—
153, 2010.

[9] Franck Cassez, Alexandre David, Emmanuel Fleury,
Kim Guldstrand Larsen, and Didier Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR,
pages 66-80, 2005.

[10] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaaf-
sma, and Roberto Sebastiani. The MathSATS5 SMT solver. In
TACAS, 2013.

[11] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli,
Roberto Posenato, and Marco Roveri. Sound and complete al-
gorithms for checking the dynamic controllability of tempo-
ral networks with uncertainty, disjunction and observation. In
TIME, pages 27-36, 2014.

[12] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli,
Roberto Posenato, and Marco Roveri. Dynamic controllability
via timed game automata. Acta Inf., 53(6-8):681-722, 2016.

[2

—



A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT 23

[13] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and
Marco Roveri. Using timed game automata to synthesize ex-
ecution strategies for simple temporal networks with uncer-
tainty. In AAAI, pages 2242-2249, 2014.

[14] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solv-
ing temporal problems using SMT: strong controllability. In
CP, pages 248-264, 2012.

[15] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solv-
ing temporal problems using SMT: weak controllability. In
AAAI 2012.

[16] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. An
SMT-based approach to weak controllability for disjunctive
temporal problems with uncertainty. Artificial Intelligence,
224:1-27, 2015.

[17] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solv-
ing strong controllability of temporal problems with uncer-
tainty using SMT. Constraints, 2015.

[18] Alessandro Cimatti, Andrea Micheli, and Marco Roveri.
Strong temporal planning with uncontrollable durations: A
state-space approach. In AAAI, pages 3254-3260, 2015.

[19] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Dy-
namic controllability of disjunctive temporal networks: Valida-
tion and synthesis of executable strategies. In AAAI, page to
appear, 2016.

[20] Jing Cui, Peng Yu, Cheng Fang, Patrik Haslum, and Brian C.
Williams. Optimising bounds in simple temporal networks
with uncertainty under dynamic controllability constraints. In
ICAPS, pages 5260, 2015.

[21] Martin Davis, George Logemann, and Donald W. Loveland.
A machine program for theorem-proving. Communications of
ACM, 5(7):394-397, 1962.

[22] Thierry de la Tour. Minimizing the number of clauses by re-
naming. In Mark Stickel, editor, CADE, volume 449 of LNCS,
pages 558-572. Springer, 1990.

[23] Leonardo Mendong¢a de Moura and Nikolaj Bjgrner. Z3: An
efficient SMT solver. In TACAS, pages 337-340, 2008.

[24] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint
networks. Artificial Intelligence, 49(1-3):61-95, 1991.

[25] Bruno Dutertre and Leonardo Mendonga de Moura. The Yices
SMT solver. Tool paper at http://yices.csl.sri.
com/tool-paper.pdf, 2006.

[26] Malik Ghallab and Hervé Laruelle. Representation and control
in ixtet, a temporal planner. In AIPS, pages 61-67, 1994.

[27] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated
planning - theory and practice. Elsevier, 2004.

[28] Torbjorn Granlund and the GMP development team. GNU MP:
The GNU Multiple Precision Arithmetic Library, 5.0.5 edition,
2012. http://gmplib.org/.

[29] Luke Hunsberger. Fixing the semantics for dynamic control-
lability and providing a more practical characterization of dy-
namic execution strategies. In TIME, pages 155-162, 2009.

[30] Luke Hunsberger. A fast incremental algorithm for managing
the execution of dynamically controllable temporal networks.
In TIME, pages 121-128, 2010.

[31] Luke Hunsberger. A fast incremental algorithm for managing
the execution of dynamically controllable temporal networks.
In TIME, pages 121-128, Los Alamitos, CA, USA, 2010. IEEE
Computer Society.

[32] Luke Hunsberger. A faster execution algorithm for dynami-
cally controllable stnus. In TIME, pages 26-33, 2013.

[33] Luke Hunsberger. A faster algorithm for checking the dynamic
controllability of simple temporal networks with uncertainty.
In ICAART, 2014.

[34] Hyondeuk Kim, Fabio Somenzi, and HoonSang Jin. Efficient
Term-ITE conversion for satisfiability modulo theories. In SAT,
pages 195-208, 2009.

[35] Stephen C. Kleene. Mathematical Logic. J. Wiley & Sons,
1967.

[36] Philippe Laborie. Resource temporal networks: Definition and
complexity. In IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, pages 948-953, 2003.

[37] Michele Lombardi and Michela Milano. Constraint based
scheduling to deal with uncertain durations and self-timed ex-
ecution. In Principles and Practice of Constraint Program-
ming - CP 2010 - 16th International Conference, CP 2010, St.
Andrews, Scotland, UK, September 6-10, 2010. Proceedings,
pages 383-397, 2010.

[38] Riidiger Loos and Volker Weispfenning. Applying linear quan-
tifier elimination. Computer Journal, 36(5):450-462, 1993.

[39] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis
of discrete controllers for timed systems. In STACS, pages 229—
242, 1995.

[40] Marta Cialdea Mayer and Andrea Orlandini. An executable
semantics of flexible plans in terms of timed game automata.
In 22nd International Symposium on Temporal Representation
and Reasoning, TIME 2015, Kassel, Germany, September 23-
25, 2015, pages 160-169, 2015.

[41] Andrea Micheli. Planning and Scheduling in Temporally
Uncertain Domains. PhD thesis, University of Trento, 1
2016. Fulltext available at http://www.mikand.net/
thesis/.

[42] Andrea Micheli, Minh Do, and David E. Smith. Compiling
away uncertainty in strong temporal planning with uncontrol-
lable durations. In IJCAI, 2015.

[43] Paul Morris. A structural characterization of temporal dynamic
controllability. In CP, pages 375-389, 2006.

[44] Paul Morris. Dynamic controllability and dispatchability rela-
tionships. In Helmut Simonis, editor, CPAIOR, volume 8451 of
Lecture Notes in Computer Science, pages 464-479. Springer,
2014.

[45] Paul H. Morris and Nicola Muscettola. Temporal dynamic con-
trollability revisited. In AAAZ pages 1193-1198, 2005.

[46] Paul H. Morris, Nicola Muscettola, and Thierry Vidal. Dy-
namic control of plans with temporal uncertainty. In IJCAI,
pages 494-502, 2001.

[47] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient sat
solver. In DAC, pages 530-535, 2001.

[48] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and
Brian C. Williams. Remote agent: To boldly go where no ai
system has gone before. Artificial Intelligence, 103(1-2):5-47,
1998.

[49] Andrea Orlandini, Alberto Finzi, Amedeo Cesta, and Simone
Fratini. Tga-based controllers for flexible plan execution. In
K1 2011: Advances in Artificial Intelligence, 34th Annual Ger-
man Conference on Al, Berlin, Germany, October 4-7,2011.
Proceedings, pages 233-245, 2011.

[50] Bart Peintner, Kristen B. Venable, and Neil Yorke-Smith.
Strong controllability of disjunctive temporal problems with
uncertainty. In CP, pages 856-863, 2007.



24

[51]

[52]

[53]

[54]

[55]

[56]

A. Micheli / Disjunctive Temporal Networks with Uncertainty via SMT

Alexander Schrijver. Theory of Linear and Integer Program-
ming. J. Wiley & Sons, 1998.

Roberto Sebastiani and Silvia Tomasi. Optimization modulo
theories with linear rational costs. ACM Transactions on Com-

putational Logic, 16(2):12:1-12:43, 2015.

Kostas Stergiou and Manolis Koubarakis. Backtracking algo-
rithms for disjunctions of temporal constraints. Artificial Intel-
ligence, 120(1):81-117, 2000.

Tohannis Tsamardinos, Thierry Vidal, and Martha Pollack. Ctp:
A new constraint-based formalism for conditional, temporal
planning. Constraints, 8(4):365-388, 2003.

Kristen Brent Venable, Michele Volpato, Bart Peintner, and
Neil Yorke-Smith. Weak and dynamic controllability of tem-
poral problems with disjunctions and uncertainty. In ICAPS -
COPLAS Workshop, pages 50-59, 2010.

Thierry Vidal. Controllability characterization and checking in
contingent temporal constraint networks. In KR, pages 559—

[571

[58]

[59]

570, 2000.

Thierry Vidal. A unified dynamic approach for dealing with
temporal uncertainty and conditional planning. In Proceedings
of the Fifth International Conference on Artificial Intelligence
Planning Systems, Breckenridge, CO, USA, April 14-17, 2000,
pages 395-402, 2000.

Thierry Vidal and Hélene Fargier. Handling contingency in
temporal constraint networks: from consistency to controllabil-
ities. Journal of Experimental and Theoretical Artificial Intel-
ligence, 11(1):23-45, 1999.

Thierry Vidal and Héléne Fargier. Handling contingency in
temporal constraint networks: from consistency to controllabil-
ities. Journal of Experimental and Theoretical Artificial Intel-
ligence, 11(1):23-45, 1999.



