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Abstract

Planning in real world domains often involves modeling and reasoning about
the duration of actions. Temporal planning allows such modeling and reasoning
by looking for plans that specify start and end time points for each action. In
many practical cases, however, the duration of actions may be uncertain and not
under the full control of the executor. For example, a navigation task may take
more or less time, depending on external conditions such as terrain or weather.

In this paper, we tackle the problem of strong temporal planning with uncon-
trollable action durations (STPUD). For actions with uncontrollable durations,
the planner is only allowed to choose the start of the actions, while the end is
chosen, within known bounds, by the environment. A solution plan must be
robust with respect to all uncontrollable action durations, and must achieve the
goal on all executions, despite the choices of the environment.

We propose two complementary techniques. First, we discuss a dedicated
planning method, that generalizes the state-space temporal planning framework,
leveraging SMT-based techniques for temporal networks under uncertainty. Sec-
ond, we present a compilation-based method, that reduces any STPUD problem
to an ordinary temporal planning problem. Moreover, we investigate a set of
sufficient conditions to simplify domains by removing some of the uncontrolla-
bility.

We implemented both our approaches, and we experimentally evaluated our
techniques on a large number of instances. Our results demonstrate the practical
applicability of the two techniques, which show complementary behavior.
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1. Introduction

Planning in real world domains often involves modeling and reasoning about
the duration of actions. For example, the activities of a planetary rover, such as
navigation and data transmission, require non-negligible time to be completed,
and their successful execution is subject to timing constraints. Both navigation
and transmission actions must occur in time windows when sufficient solar power
is available, and the transmission action must occur in a time window when a
receiving satellite is in view.

An approach to tackle the problem consists in combining classical planning,
where actions are assumed to be instantaneous, with a subsequent scheduling
phase, where the durations are taken into account. Unfortunately, valid classical
plans may turn out not to admit a feasible schedule.

Temporal planning [3] attempts to overcome this problem by allowing for
modeling and reasoning about durative actions. In the domain description,
actions are associated not only to preconditions and effects on the state, but
also with constraints on the durations. For example, a navigation or drilling
task may have lower and upper duration bounds. A temporal planner looks
for plans where each action is associated with start and end time points. The
idea can be described as effectively integrating the scheduling aspects within
the search for the set of actions to be executed, checking at the same time for
the existence of a schedule.

In some practical applications, however, the duration of actions may be
uncertain and not under the control of the executor. For example, a navigation
task to a given location may take more or less time, depending on external
factors, such as terrain or weather conditions. The plan may specify when to
start the operation, but the actual duration is controlled by the environment.

In this paper, we introduce the problem of Strong Temporal Planning with
Uncontrollable Durations (STPUD). In this setting, the planner is only allowed
to choose the start of the actions, while the duration of uncontrollable actions is
chosen by the environment at run time, within known bounds. A solution plan
is required to be temporally strong, i.e. robust, with respect to uncontrollable
action durations, and to achieve the goal over all possible executions, despite the
run-time choices of the environment. These plans are quite similar to temporal
plans in PDDL, where a specific starting time and duration is specified for each
action in the plan, with the difference being that we do not specify the duration
of uncontrollable actions.

The STPUD problem is the lifting to the planning case of the strong control-
lability problem for temporal networks [4, 5] and thus does not allow conditional
execution based on the observation of action durations at run-time. This means
that all the uncertainty is resolved at planning time and the plans do not con-
tain conditional branches. Such plans can be sub-optimal in terms of make-span,
and one can construct examples where strong plans do not exist. However, for
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duration uncertainty, this seems to be less common than for other types of un-
certainty (e.g. uncertainty in the outcome of actions). For example, with Mars
rovers there is considerable duration uncertainty for driving operations, but the
approach used in practice is to construct strong plans assuming maximum du-
ration, and just wait if the rover gets to a location too early for the next desired
activity. This is practical in this domain because there is often little penalty for
waiting, except the delay of future actions. In general, unless a domain has a
lot of intricate temporal constraints with both lower and upper bounds, there
is a good chance that a strong plan exists. This plan may not be optimal if one
is interested in minimizing make-span, but it usually exists. Moreover, in some
situations the executor of the plan may not have the time or the computational
power to perform a re-scheduling of the plan at run-time. A typical example
is a spacecraft during an orbit insertion maneuver: the pace of the operations
and communication limitations require that a plan be pre-computed with no
run-time adjustment.

One distinct advantage of strong plans is understandability: a human can
read, understand and check a STPUD plan, while the same operation can be ex-
tremely difficult for a conditional plan or a flexible plan represented for example
as an STN(U) or even as a simple precedence graph. Finally, while this paper
focuses on techniques for automatic synthesis of strong plans, the resulting plans
can often be relaxed to partially-ordered plans before execution, similar to what
can be done for deterministic PDDL plans to reduce make-span (e.g. [6]). This
could improve the quality of such plans during execution, but adapting such
techniques for the STPUD case is left for future work.

In this paper, we explore two complementary approaches to STPUD. First,
we discuss a dedicated planning method to deal with uncontrollable durations,
which generalizes the forward state-space temporal planning (FSSTP) frame-
work introduced in [7] and used in [8, 9]. Intuitively, FSSTP applies classical
planning over an abstraction of the temporal domain, where temporal prece-
dences over events are taken into account at a qualitative level, to enumerate
candidate plans. The quantitative aspects are then taken into account by solving
the consistency problem of the induced Simple Temporal Network (STN) [10].
In order to deal with temporal uncertainty, we retain the main loop of FSSTP,
dealing with the quantitative aspects by means of Temporal Networks with Un-
certainty1 (TNUs), leveraging recent scheduling techniques for TNU [11] based
on Satisfiability Modulo Theories [12]. We call the derived technique S-FSSTP.
This approach is far from being trivial; we show how simply replacing the STN
in [9] with the corresponding STNU may result in an unsound technique.

Second, we present a compilation-based planning method, that reduces any
STPUD problem to a temporal planning problem, where all the actions have
controllable durations. The sound-and-complete reduction eliminates uncon-
trollable durations by introducing intermediate effects and conditions, which

1The term uncertainty is used here for historical reasons; we believe that temporal uncon-
trollability would be more appropriate.
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are events that take place during an action execution.
We also investigate a domain transformation technique that is able to elim-

inate some of the uncontrollable durations by reasoning in terms of worst case
execution. This technique preserves the space of plans/set of solutions, and can
be used as a preprocessor for both the planning approaches.

The approaches described above have been implemented and experimentally
analyzed. We considered a large number of instances obtained by extending
the temporal planning domains available in the literature with uncontrollable
durations. Our results demonstrate the practical applicability of our approaches,
and provide interesting insights. First, the two approaches we present often
exhibit complementary behaviors, so that further efficiency can be achieved
using a portfolio approach. Second, the preprocessing technique has negligible
costs, but it greatly pays off, in selected cases, for both planning approaches.

Paper structure. The paper is structured as follows. In Section 2 we discuss
related work. Section 3 introduces and formalizes the Strong Temporal Plan-
ning with Uncontrollable Durations problem. In Section 4 we give a struc-
tured overview of the approaches. Section 5 proposes a generalization of the
state-space temporal planning framework for solving the STPUD problem. In
Section 6 we describe the compilation technique, which removes the duration
uncertainty from a given STPUD. In Section 7, we describe the domain sim-
plification technique for uncontrollability elimination. In Section 8 we exper-
imentally evaluate the merits of all the proposed techniques. We conclude in
Section 9 by reviewing the paper and proposing future research directions.

2. Related Work

A few works in the literature consider the problem of planning with un-
controllable durations, but none of them consider the STPUD problem as it is
presented in this paper. The only framework available for planning with un-
certain duration is probabilistic, while here we focus on exact techniques for
Strong planning with interval durations. There is a significant corpus of papers
concerning the pure scheduling problem, most notably works on temporal net-
works with uncertainty, but these do not consider plan generation from a model
of a system, only the temporal allocation of activities. STPUD can be thought
of as a combination of scheduling under temporal uncertainty with temporal
planning.

2.1. Temporal Networks with Uncertainty

Temporal uncertainty is a well-understood concept in scheduling. It has been
widely studied [13, 14, 15, 11]. Given a set of actions with uncontrollable dura-
tions subject to a set of temporal constraints, we are interested in solutions to
schedule the actions such that all the temporal constraints are respected regard-
less of the actual duration the actions may take. Depending on the information
available to the scheduler at run-time, different classes of problems have been
defined [4].
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The problem we address in this paper can be seen as a generalization of
Strong Controllability for Temporal Networks [4, 5] to planning (rather than
scheduling). Strong controllability is the problem of finding a fixed schedule for
the controllable time points that fulfills all the constraints in each valid situation
encoded by the network. Dealing with planning is much harder because the
actions (and thus the time points associated with them) in a plan are not known
a-priori and must be searched for. Moreover causal relationships in planning are
much more complex than Temporal Network constraints.

2.2. Temporal Planning

In temporal planning, duration uncertainty is a known challenge [16], but
few temporal planners address it explicitly. Some temporal planners [17, 18]
cope with this issue by generating “flexible temporal plans”: instead of fixing
the execution time of each action, they return a (compactly represented) set of
plans that must be scheduled at run-time by the plan executor. This approach
cannot guarantee plan executability and goal achievement at runtime, because
there is no formal modeling of the boundaries and contingencies in which the
system is going to operate. Instead, our proposed approach requires a formal
modeling of the problem uncertainty and guarantees plan executability and goal
achievement under any modeled contingency. In addition, flexible plans require
an executor able to solve constraints at runtime to schedule the activities. Flexi-
bility and controllability are complementary: controllability provides guarantees
with respect to the modeled uncertainty, while flexibility allows the plan to be
adjusted during execution. In principle, we can use any temporal planner that
can generate flexible plans in combination with our compilation to generate a
flexible strong plan.

IxTeT [19] is the first attempt to lift to the planning case the results in tem-
poral reasoning under uncertainty. The planner generates a strategy for schedul-
ing the actions depending on contingent observations and encodes it as a dy-
namically controllable Simple Temporal Network with Uncertainty (STNU) [4].
This plan representation requires a powerful plan executor, able to dynami-
cally schedule an STNU. These plans sometimes work in more situations than
the Strong Plans we generate in our work, but they are also more complex to
generate, understand, and execute. Strong Plans are frequently required for
safety critical systems like space applications, where guarantees are needed, and
computational power is limited.

There has also been work on temporal planning with probabilistic duration
uncertainty, e.g. [20, 21, 22, 23, 24, 25, 26, 27]. This work assumes a probability
distribution over action durations, and attempts to generate policies or condi-
tional plans that branch on the observed action durations at run time. A good
discussion of much of this work can be found in [25]. The primary limitations of
these approaches is that they are either incomplete (only generate partial poli-
cies), or tend to suffer from scalability issues. Instead we assume that durations
are bounded in convex intervals, and attempt to generate Strong Plans – that
is, non-branching plans that guarantee goal achievement and plan executability
in all the allowed contingencies.
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There is a clear parallel between the problem we are solving and conformant
planning [28]. In this sense, the work we describe in Section 6 is similar to [29] in
which the authors transform conformant planning into deterministic planning,
although the translation is very different.

Finally, the work in [30] presents a logical characterization of the STPUD
problem for timelines with temporal uncertainty, as well as a first-order encoding
of the problem having bounded horizon. In Section 5 of this paper, we general-
ize this framework, as we do not impose any bounded horizon for the problem
and we consider a more expressive language allowing disjunctive preconditions,
effects at arbitrary time points during actions, and durative conditions on arbi-
trary sub-intervals.

3. The STPUD Problem

In this section, we formally define the syntax and semantics of Strong Tem-
poral Planning with Uncontrollable Durations (STPUD) and we discuss the
issues that arise in comparison to temporal planning without uncertainty.

3.1. Syntax

In order to express planning problems with uncontrollable durations, we pro-
pose a rich language that includes timed-initial-literals (TILs), and multi-valued
variables. In addition, we extend the language to allow conditions expressed over
sub-intervals of actions, and effects at arbitrary time points during an action.
These features turn out to be particularly useful for encoding many problems
of interest, and for our translation2.

In order to define the abstract syntax of our language we need to consider
four kinds of intervals, namely closed, left-open, right-open and open. We will
use these intervals to express durative conditions.

Definition 1. Given two numeric expressions a and b, we define the four pos-
sible intervals having extremes a (lower bound) and b (upper bound) as: [a, b]
closed interval; (a, b] left-open interval; [a, b) right-open interval; and (a, b) open
interval.

We write [(a, b)] to indicate an instance of the above possibilities without
distinguishing the type, similarly [(a, b] indicates an interval that can be open or
closed on the left, but closed on the right, and so on. Moreover, we write [a] to
indicate the single-point interval [a, a].

We can now define a STPUD planning problem P as a tuple 〈V, I, T,A,G〉
where:

2To simplify the presentation, we exclude some features that are orthogonal to our ap-
proach of handling temporal uncertainty, such as numeric variables and domain axioms. Our
techniques will work whether or not those features are included.
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• V = {f1, · · · fn} is a finite set of variables3, each having a domain Dom(fi).

• I is the initial state: a complete assignment of values to each variable in V :
for each variable f ∈ V , I(f) ∈ Dom(f).

• T is a set of timed-initial-literals, each of the form 〈[t] f := v〉 with f ∈ V ,
v ∈ Dom(f) and t ∈ R>0. The real number t is the wall-clock time at which
f will be assigned the value v.4

• A is a set of durative actions each of the form a =̇ 〈[l, u], C,E〉 where5:

– l, u ∈ R>0, with l ≤ u being the action duration bounds.

– C is the set of disjunctive conditions; each element c ∈ C is a condition of
the form 〈[(stc, etc)]

∨n
i=1 fi = vi〉 where each fi ∈ V and vi ∈ Dom(fi).

The expressions stc and etc indicate the start and end time points of the
condition c and are restricted to be of the form sta + δ or eta − δ with
0 ≤ δ ≤ l.

– E is a set of instantaneous effects; each e ∈ E is of the form 〈[te] f := v〉
where f ∈ V , v ∈ Dom(f) and te =̇ sta + δ or te =̇ eta − δ with 0 ≤ δ ≤ l.

• G is the set of disjunctive goal conditions, each of the form
∨n
i=1 fi = vi,

where each fi ∈ V and vi ∈ Dom(fi).

Intuitively, the syntactic tokens sta and eta indicate the start and end times
of action a, and are used to specify timings of effects and conditions relative
to the action timing. Note that for the sake of simplicity, we do not permit
a condition c with stc = eta − δ1 and, simultaneously, etc = sta + δ2, while
all other cases are allowed. In practice, this means that we cannot express a
condition that starts at a time point relative to the end of the action and ends
at a time point expressed relative to the start of the action. We believe this
combination isn’t particularly useful in practice and this limitation simplifies
the semantics and the explanation of the techniques. However, there is no
fundamental problem in extending all the proposed techniques to cover this
case. Moreover, we do not require stc to be lower than (or equal to, if the
interval is closed) etc: this is because such an interval would be empty (i.e. it
would contain no time-point). As such, any condition expressed over an empty
interval is imposed over no time-point, and thus is vacuously true. All the
subsequent semantics and techniques are defined in such a way that an empty
interval poses no constraints on the problem. For these reasons, we allow this
degenerate case. Finally, when the interval for a condition c is a single point
(i.e. [stc]), the condition is instantaneous.

3We indicate the variables with the letter f (for “fluent”) to avoid confusion with values
that will be indicated with v.

4In this problem formalization, we fix the timing for timed-initial-literals. However, al-
lowing a window of possible timings that can be uncertain or controllable doesn’t complicate
anything, and the techniques we propose can be easily extended to handle them. In fact, we
can think of timed-initial-literals as end effects of actions starting at time 0.

5We use =̇ to distinguish symbol definitions from equality constraints.
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Extremes + Overall Ctrl-Extr (PDDL 2.1) Unc-Extr

Arbitrary Sub-Intervals Ctrl-Arbit (ANML, NDL) Unc-Arbit

Table 1: Classification of relevant problem sub-classes. For each case, we indicated
the abbreviation name used in the paper and a planning language representative in
written in parenthesis where available.

We assume that the set of actions A is partitioned into two sets Ac and
Au of controllable and uncontrollable actions, respectively. This is needed to
distinguish between actions whose duration can be controlled by the agent, and
those that have uncontrollable durations. In both cases, the bounds on the
duration need to be satisfied, but analogously to TNU contingent links, if an
action is uncontrollable, its duration is assumed to take a value in the specified
bound.

The solution to a STPUD problem P is a plan π that assigns the starting of
all the actions and specifies the duration only for controllable actions.

Definition 2. A plan π of P is a finite set of tuples 〈t, a, d〉, in which actions
a ∈ A, t ∈ R≥0, d ∈ R>0 if a ∈ Ac and d = ⊥ if a ∈ Au.

Intuitively, an element 〈t, a, d〉 indicates the start of an instance of the action
a at time t, with duration d if a is a controllable action. The assignment of d = ⊥
for uncontrollable actions reflects the intuitive notion that since the duration is
not under the control of the plan executor, the plan cannot specify it.

3.1.1. Discussion

The planning problem formalism we describe includes several features that
allow considerable expressiveness. In particular, we focus on the presence of
uncertainty in the action durations, that constitutes the main objective of this
work. We also allow the presence of “intermediate” effects and conditions:
the possibility of having action effects at intermediate times, and to impose
conditions in sub-intervals of the action execution. This latter feature is not
new, languages such as ANML [31] or NDL [32] support it natively, but it is not
natively supported in other languages. For example, PDDL 2.1 does not allow
for intermediate effects nor for conditions at times different from the start, the
end, or the entire action duration.

If we classify according to the presence or absence of these features, we ob-
tain the landscape of planning problem sub-classes depicted in Table 1. The
table shows four classes of problems. Clearly, every class with arbitrary intervals
subsumes the class with extreme intervals having the same action controllabil-
ity. Similarly, each class having action uncertainty is strictly more general than
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the class without it. Given these subsumption rules, the only two incomparable
classes are Unc-Extr and Ctrl-Arbit: both subsume Ctrl-Extr, but no
obvious relation is present between the two. Unc-Arbit is the most general
class that subsumes every other case and coincides with the language we dis-
cussed in the previous section. The aim of this work is to tackle the Unc-Arbit
problem class in its full complexity.

Some of the reported problem classes are supported in the literature and
by dedicated planning tools. In particular, Ctrl-Extr is the temporal plan-
ning problem addressed by all the planners supporting the PDDL 2.1 language.
Ctrl-Arbit is a sub-case of the features provided by the ANML language,
therefore tools such as FAPE [33] can natively reason on instances of this class.
Moreover, reduction techniques have been presented for transforming an in-
stance of the Ctrl-Arbit class to a problem in Ctrl-Extr [34, 31].

3.2. Running Example

We give a small example problem that will be used throughout the paper.
A rover, initially at location l1, needs to transmit some science data from

location l2 to an orbiter that is only visible in the time window [14, 30]. The
rover can move from l1 to l2 using an action move that has uncontrollable
duration between 10 and 15 time units. The data transmission action trans
takes between 5 and 8 time units to complete. The goal of the rover is to
transmit the data to the orbiter. Because of the harsh daytime temperatures at
location l2, the rover cannot be at l2 until the sun goes behind the mountains
at time 15. Figure 1 illustrates this scenario, which we encode as follows6:

V =̇ {pos : {l1, l2}, visible : {T, F}, hot : {T, F}, sent : {T, F}}
I =̇ {pos = l1, visible = F, sent = F, hot = T}
T =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G =̇ {(sent = T)}
Ac =̇ ∅
Au =̇ {〈[10, 15], Cmove, Emove〉, 〈[5, 8], Ctrans, Etrans〉}

Cmove =̇ {〈[stmove] pos = l1〉, 〈[etmove] hot = F〉}
Ctrans =̇ {〈[sttrans, ettrans] pos = l2〉, 〈[sttrans, ettrans] visible = T〉}
Emove =̇ {〈[etmove] pos := l2〉}
Etrans =̇ {〈[ettrans] sent := T〉}

6In the formalization of the move action, the rover doesn’t change its position until the
end of the action. A more typical formulation sets the rover position to a special value
“undefined” at the beginning of the move action. In a propositional formulation, like in
PDDL, this is accomplished by simply deleting the rover position as a start effect. This is
completely orthogonal to the uncertainty features of the language so we decided to keep the
example as simple as possible.

9



Figure 1: A graphical representation of the running example. The rover, initially
at l1 can move to l2 where it can transmit data to a satellite. Action durations are
indicated in black, the satellite visibility window is in green and the interval where the
temperature in l2 is favorable is indicated in red.

The pos variable indicates the position of the rover, visible is true if the satellite
is available for data transmission, hot is true if the temperature at l2 is too hot
for the rover, and sent is set to T after the data is sent to the satellite.

Figure 2 graphically shows a valid strong plan πex for the running example.
The plan is defined as follows.

πex =̇ {〈6,move,⊥〉, 〈22, trans,⊥〉}

Note that all the actions in πex have uncontrollable duration; hence, the strong
plan does not specify their duration (durations are replaced by ⊥).

3.3. Semantics

We give the semantics of the planning language by defining the validity of a
plan π for any given STPUD problem P . As usual, P admits a solution if there
exists a valid plan, otherwise the problem is said to be unsolvable.

We start by defining the projection of a STPUD problem. Intuitively, in a
projected problem, the durations of uncontrollable actions become controllable
choices for the planner. For example, the trans action is originally assumed
to last between 5 and 8 time units; in the projection this choice becomes con-
trollable, but we retain the requirement that the duration lies within 5 and
8.

Definition 3 (Projected Problem). Given a STPUD problem P =̇〈V, I, T,A,G〉
with durative actions A =̇Ac ∪Au, the projected problem without uncertainty is
a STPUD ctrl(P ) =̇ 〈V, I, T,A′, G〉 that is identical to P except for the partition
of the set of actions that is A′ =̇A′c ∪A′u with A′c =̇Ac ∪Au and A′u =̇ ∅.

The basic element of our semantics is a chronicle, that is used to assign a
value to each variable in V for each time instant.
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Definition 4 (Chronicle). A chronicle τ for a given STPUD problem instance
P =̇〈V, I, T,A,G〉 is a set of functions τf : R≥0 → Dom(f), one for each f ∈ V .

Given a plan, we can now define the chronicle induced by it. In our language
we have three components that contribute to change the state of a variable,
namely the initial state, the TILs and action effects. Apart from these events,
each variable is assumed to maintain its value in the other time instants. To
formalize this concept we start by collecting the set of change events in the
execution of the plan.

Definition 5 (Set of Changes SoC). Given a projected planning problem in-
stance ctrl(P ) =̇ 〈V, I, T,A,G〉 and a plan π =̇ {〈ti, ai, di〉 | i ∈ [1, n]}, the
multi-set of changes induced by π is a set SoC(ctrl(P ), π) defined as follows.

• for each f ∈ V , 〈0, f, I(f)〉 ∈ SoC(ctrl(P ), π);

• for each 〈[t] f := v〉 ∈ T , 〈t, f, v〉 ∈ SoC(ctrl(P ), π);

• for each 〈t, a, d〉 ∈ π with a =̇ 〈[l, u], C,E〉:

– for each 〈[sta + δ] f := v〉 ∈ E, 〈t+ δ, f, v〉 ∈ SoC(ctrl(P ), π);

– for each 〈[eta − δ] f := v〉 ∈ E, 〈t+ d− δ, f, v〉 ∈ SoC(ctrl(P ), π).

Given a positive time x ∈ R>0 and a variable f , let PEfx be all the elements
〈t, f, v〉 of SoC(ctrl(P ), π) with t < x; let maxPEfx be the maximum timing in
PEfx (i.e. max(t | 〈t, f, v〉 ∈ PEfx )). We indicate with PreC(ctrl(P ), π, x, f)
the multi-set {v | 〈maxPEfx , f, v〉 ∈ PEfx}.

We remark that, at this stage, we need to keep a multi-set of changes because
it is possible for two effects to set the same variable to the same value. We
consider such a situation illegal and we will catch it in Definition 8.

Now, we can define the chronicle induced by a plan by imposing that at
each time point corresponding to a change in SoC, the chronicle changes its
value; and between two successive changes, the chronicle maintains its value.
In this sense, the chronicle is constrained to be a piecewise-constant function.
The PreC(ctrl(P ), π, x, f) multi-set contains the changes on variable f that are
applied immediately before time x. Note the strict inequality in the definition of
PreC(ctrl(P ), π, x, f): we consider the value of the change immediately before,
but not at the time x.

Definition 6 (Induced Chronicle). Given a projected planning problem instance
ctrl(P ) =̇ 〈V, I, T,A,G〉 and a plan π, a chronicle τπ induced by π is defined as
follows.

For each variable f ,

• τπf (0) = v with 〈0, f, v〉 ∈ SoC(ctrl(P ), π);

• for each x ∈ R>0, τπf (x) = v with v ∈ PreC(ctrl(P ), π, x, f).
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Intuitively, each variable in each time point assumes the value imposed by
the last change until another is applied. Note that, if no two effects on the
same variable happen at the same time, then the induced chronicle is unique
(otherwise, we will deem the execution invalid in Definition 8).

For example, consider an effect 〈[eta]f := v〉 and suppose the action a ends at
absolute time 10. The value of f is not changed at time 10 but immediately after.
This means, that a condition requiring f to have value v is not satisfied at time
10, but a positive amount of time is required to pass. This view is practically
compatible with the PDDL 2.1 specification7 and also with the continuous time
version of the ANML language.

As an auxiliary definition, we introduce the Absolute-Time Interval of a
condition of an action appearing in a plan. The idea is to define the subset of
the time points in which each condition is required to hold, given a plan.

Definition 7 (Absolute-Time Interval). Given a plan π and a plan element
〈t, a, d〉 ∈ π, the absolute-time interval of a condition c ∈ C of action a is a
subset of the real numbers ATI(c, 〈t, a, d〉) defined as follows.

ATI(c, 〈t, a, d〉) =̇


[(t+ δs, t+ δe)] if c = 〈[(sta + δs, sta + δe)] φ〉
[(t+ δs, t+ d− δe)] if c = 〈[(sta + δs, eta − δe)] φ〉
[(t+ d− δs, t+ d− δe)] if c = 〈[(eta − δs, eta − δe)] φ〉

We can now define the validity of a plan for a projected problem. Intuitively,
we need to check three conditions to validate a plan. First, we require that there
are not two or more changes of the same variable at the same time; second, we
check that all the conditions of all the actions used in the plan are satisfied; and
finally we require that all the goals are reached immediately after the end of the
last action in the plan.

Definition 8 (Projected Problem Plan Validity). Given a projected problem
ctrl(P ) =̇ 〈V, I, T,A,G〉, a plan π is valid if the following conditions hold:

1. for each t ∈ R≥0 and each f ∈ V ,
|{〈t, f, v〉 | 〈t, f, v〉 ∈ SoC(ctrl(P ), π)}| ≤ 1;

2. for each 〈t, a, d〉 ∈ π with a =̇ 〈[l, u], C,E〉, the following holds:

• d ∈ [l, u];

• for each c = 〈[(stc, etc)]
∨n
i=1 fi = vi〉 ∈ C, and each x ∈ ATI(c, 〈t, a, d〉),∨n

i=1 τ
π
fi

(x) = vi holds;

3. for each goal condition (
∨n
i=1 fi = vi) ∈ G,

∨n
i=1 τ

π
fi

(x) = vi holds, for any
x ∈ [tmax, tmax + ε] with tmax =̇max({t+ d | 〈t, a, d〉 ∈ π}) and a sufficiently
small ε ∈ R>0.

7In PDDL 2.1, effects are applied immediately, but a changed predicate or fluent cannot
be inspected until immediately after. In addition, PDDL 2.1 requires a known minimal time
quantum ε to pass between any pair of changing points (an instantaneous action or the start
or end of a durative action) if the conditions/effects in such a pair of points are interfering [3].
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move transmit
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time
...
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Figure 2: Graphical execution of πex. Filled regions represent the uncertainty in the
action duration.

We remark that here we are defining the semantics of a valid plan for a projected
planning problem, hence we reject as invalid any plan yielding an execution that
violates any of the above constraints.

Finally, we can define the semantics of any STPUD problem P by imposing
that each plan obtained by specifying a valid duration for each uncontrollable
action is valid for the projected problem of P . This captures the intuitive notion
of strong plan: regardless of the actual duration of each uncontrollable action
specified in the plan, the execution is valid and all the goals are satisfied.

Definition 9 (STPUD Plan Validity). Given a STPUD problem P , a plan
π =̇ {〈ti, ai, di〉 | i ∈ [1, n]} is valid, if all the plans π′ ∈ {〈t, a, d〉 | 〈t, a, d〉 ∈
π, a ∈ Ac} ∪ {〈t, a, k〉 | 〈t, a, d〉 ∈ π, a ∈ Au, a =̇ 〈[l, u], C,E〉, k ∈ [l, u]} are valid
for ctrl(P ).

A valid plan for a given STPUD is called a “strong plan”.

3.4. Discussion

In the general case, finding a strong plan for a problem with uncontrollable
durations is different from simply considering the maximum or the minimum
duration for each action. Consider our rover example and its strong plan shown
in Figure 2. The move action must end before the transmit action can start
and, at the same time, move cannot end before time 15 due to the tempera-
ture constraint. If we only consider the lower-bound on the duration of move
(i.e., planning with a fixed duration of 10 for move) then one valid plan is:
πlb =̇ {〈11,move〉, 〈22, trans〉}. However, because of the uncertainty in the ac-
tual execution duration of move, it may actually take 14 time units to arrive
at l2. Thus, the rover would start transmitting at time 22 before it actually
arrives at l2 at time 11 + 14 = 25. Thus, plan πlb is not a valid strong plan.
Similarly, if we consider only the maximal duration (i.e., planning with a fixed
duration of 15), then one possible plan would be: πub =̇{〈1,move〉, 〈22, trans〉}.
However, the actual execution of move, may take only 11 time units (and not
the planned maximum of 15 time units) to arrive at l2. This would violate the
constraint that the rover should arrive at l2 after t = 15 to avoid the sun, so
πub is also not a valid plan.
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a

b can start · · ·

b2 can start
· · ·

b1 can start

time
...

t t+ l t+ u

Figure 3: Example of situation where the classical compilation of disjunctive precon-
ditions fails in presence of temporal uncertainty. Intervals in which b-actions can start
are represented by solid lines: an arrow extreme indicates an open interval, a circle
indicates a closed interval.

Disjunctive Conditions. In contrast to ordinary temporal planning, given a
STPUD problem it is not possible to compile away disjunctive conditions using
the action duplication technique [35]. This is because the set of satisfied dis-
juncts in the presence of uncertainty can depend on the contingent execution.
For example, consider the situation depicted in Figure 3. An action a is start-
ing at time t where two Boolean variables p1 and p2 are F. The action a has
uncontrollable duration in [l, u], a starting effect e1 =̇ 〈[sta] p1 := T〉 and two
ending effects e2 =̇ 〈[eta] p1 := F〉 and e3 =̇ 〈[eta] p2 := T〉. An at-start condition
p1 ∨ p2 of another action b is satisfied anywhere between the start of the action
a and the next deletion of p2. Thus, b can start anytime after t. However, by
applying the compilation on this disjunctive condition we replace b with two
actions b1 and b2, one with an at-start condition p1 and the other with an at-
start condition p2. Now, b1 is not executable within (t+ l, t+ u] because there
is no time point in d in which we can guarantee that p1 = T (because a may
take the minimum duration l and thus the at-end effect e2 will occur at t+ l to
set p1 = F). Similarly, we cannot start b2 within (t + l, t + u] because there is
no guarantee that p2 will be T during (t + l, t + u] (this is because a may take
the maximum duration u and thus e3 that sets p2 = T will not happen until
t + u). Thus, compiling away disjunctive conditions as in temporal planning
leads to incompleteness (some valid plans cannot be found) when actions with
uncontrollable duration are present. For this reason, it is important to explicitly
model disjunctive conditions in our language.

Computational Complexity. Considering decidability and computational com-
plexity of the STPUD problem, we first note that the domain of the variables
in a STPUD problem may be finite or infinite, but only finitely-many values
from each domain are used in a problem instance, because we only allow for the
equality relation in effects and conditions. So, each problem instance can be
polynomially transformed, by means of a logarithmic encoding of the relevant
values of each domain, into an equivalent one that only has Boolean variables.
In this way, we can meet the general framework of Rintanen [36] for temporal
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planning.
The STPUD problem is decidable: this paper presents sound-and-complete

solution algorithms. Concerning the computational complexity of STPUD, we
present the following results.

Theorem 1. The STPUD problem is EXPSPACE-Hard.

Proof. (Sketch) STPUD trivially subsumes temporal planning (any temporal
planning instance is just a STPUD instance with no action having uncontrol-
lable duration). Because temporal planning is EXPSPACE-Complete [36], the
STPUD problem is EXPSPACE-Hard.

Theorem 2. The STPUD problem is in 2-EXPSPACE.

Proof. (Sketch) Any STPUD problem instance can be reduced to a correspond-
ing temporal planning problem without uncontrollable durations of exponential
size (see for example the compilation we present in Section 6). Since temporal
planning without uncontrollable durations is EXPSPACE-Complete [36], the
STPUD problem is in 2-EXPSPACE.

We currently have no proof of membership in EXPSPACE nor a proof of 2-
EXPSPACE-Hardness; we only know that the STPUD problem lies in between
these two classes. We leave a detailed analysis of the computational complexity
of the STPUD problem and its sub-classes for future work. In this paper we
concentrate on practical solution techniques for the problem.

4. Overview of the Approaches

Given the problem classification in Table 1, here we give an outline of the
techniques included in this paper that have been developed to address the more
general Unc-Extr and Unc-Arbit class.

First, we focus on the Unc-Extr class and in Section 5 we present a dedi-
cated solving technique that extends the Forward State-Space Temporal Plan-
ning (FSSTP) approach to deal with uncontrollable durations. We indicate this
technique as S-FSSTP (for Strong FSSTP). We propose different variants of
the technique that are sound for the Unc-Extr problem class; in addition, we
prove that one of the approaches is also complete for the same problem class.

Second, we devise a compilation technique that transforms any instance of
the Unc-Arbit class into an instance of the Ctrl-Arbit class, effectively re-
moving the temporal uncertainty from the problem. The compilation is such
that any plan of the controllable instance admits a plan if and only if the orig-
inal Unc-Arbit planning problem has a valid strong plan. This compilation,
discussed in Section 6, makes use of arbitrary-time conditions and effects; hence,
even if applied on a Unc-Extr instance, it produces an equivalent Ctrl-Arbit
instance.

We also present a simplification technique that is able to reduce (and in
some cases, to remove) the temporal uncertainty in a planning instance. This
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Table 2: Overview of the proposed techniques in the Strong Temporal Planning with
Uncontrollable Durations problem sub-classes landscape. Arrows stand for compilation
techniques, S-FSSTP indicates a dedicated technique for its cell. For each technique,
the section where it is discussed is reported.

technique does not make use of intermediate effects nor conditions, hence it can
be applied on both the Unc-Arbit and Unc-Extr classes without ending up
in a different problem class.

Finally, in the experimental evaluation section (Section 8), we adapt exist-
ing techniques for removing intermediate conditions and effects in the context
of PDDL 2.1. We discuss and extend existing techniques to obtain an efficient
compilation for the removal of intermediate effects and conditions when no ac-
tions having uncontrollable duration are present.

Table 2 gives an overview of the aforementioned techniques and reductions
in the problem classes landscape.

5. STPUD via Forward State-Space Search

In this section, we focus on the Unc-Extr problem class: for each action a,
effects can only be specified at times sta and eta, and conditions are limited to
timings [sta], [eta] or (sta, eta). We propose a dedicated approach for solving the
STPUD problem, based on an extension of the Forward State-Space Temporal
Planning (FSSTP) approach. We first introduce the relevant background on
Temporal Networks with Uncertainty and we formalize the Forward State-Space
Temporal Planning (FSSTP) approach, then we generalize it to handle temporal
uncertainty. The resulting technique, that handles the Unc-Extr problem
class, is referred to as S-FSSTP.

5.1. FSSTP Background

5.1.1. Temporal Networks with Uncertainty

In temporal planning, we need to reason not only about the ordering of ac-
tions in time, but also about their duration. A common framework to represent
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and reason about these kinds of constraints in scheduling (i.e. when the set
of activities is known and only a suitable timing for the activities is sought) is
the Temporal Network (TN) [10, 37]. The TN formalism is used to represent
temporal constraints over time-valued variables representing time points. Each
constraint is a disjunction of atoms in the form x− y ∈ [l, u], where x and y are
time points and l, u ∈ R ∪ {∞,−∞}. Formally, a TN is a tuple 〈X,C〉 where
X is a set of time points and C is a set of temporal constraints. Time points
are typically used to represent the start or the end of actions; causal relations
are represented as precedence constraints, forcing one event to happen before
another; and metric constraints allow for the encoding of action durations by
constraining the difference between start and end of an action. A solution to
a TN is an assignment of real values to the time points that satisfies all the
constraints. A TN is said to be consistent if it has a solution.

In order to deal with temporal uncontrollability, TNs with uncertainty (TNUs)
have been proposed [4, 5].

Definition 10 (Temporal Network with Uncertainty). A Temporal Network
with Uncertainty (TNU) is a tuple 〈Xc, Xu, Cc, Cf 〉, where Xc and Xu are sets
of time points; Cc=̇{cc1, · · · , ccm} is a set of constraints of the form cci=̇

∨
j xi−

yi ∈ [li,j , ui,j ] with xi ∈ Xu, yi ∈ Xc ∪ Xu and li,j , ui,j ∈ R ∪ {∞,−∞}; and
Cf =̇ {cf1, · · · , cfn} is a set of constraints of the form cfi =̇

∨
j xi,j − yi,j ∈

[li,j , ui,j ] with xi,j , yi,j ∈ Xc ∪Xu and li,j , ui,j ∈ R ∪ {∞,−∞}.

In a TNU some of the time points can be controlled (assigned values) by
the solver (Xc), while the others (Xu) are controlled (assigned values) by the
environment. Similarly, the constraints are divided according to requirements
(called free constraints, Cf ) and assumptions (called contingent constraints,
Cc). As such, TNUs can be seen as a form of game between the solver and an
adversarial Nature [11].

Given a TNU, different kinds of queries are possible. In this paper, we focus
on strong controllability [4, 5]. A TNU is strongly controllable if there exists
an assignment (called a strong schedule) of real values to each controllable time
point, such that all free constraints are satisfied for every possible assignment
of the uncontrollable time points satisfying the contingent constraints.

Depending on the structure of the constraints, various classes of TNUs have
been identified [5]. We focus on two classes of TNUs: Simple Temporal Net-
works with Uncertainty (STNUs) and Disjunctive Temporal Networks with Un-
certainty (DTNUs). An STNU is a TNU where each constraint has exactly
one disjunct (i.e. it is conjunctive), while DTNUs allow for arbitrary Boolean
combinations in the constraints.

Several approaches to check strong controllability of a TNU have been pro-
posed. In [4], the authors show that the strong controllability problem for an
STNU is polynomial-time, while for a DTNU it is NP-hard [5]. Recently, new
techniques to solve strong controllability for DTNUs have been presented [11]:
they rely on the reduction of strong controllability to a Satisfiability Modulo
Theory [12] problem.
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5.1.2. FSSTP

The idea behind the FSSTP approach is an interplay between a state-based
forward search planner to generate an abstract plan and a temporal reasoner to
check its temporal feasibility [7, 9]. Intuitively, a temporal plan is a set of action
instances scheduled at specific times with specific durations. FSSTP works by
encoding each durative action as a pair of instantaneous, classical actions: a
classical planner is employed to generate sequences of such instantaneous action
instances that are sound from the propositional point of view, but might violate
some temporal constraint. Then, a scheduler is used to check temporal feasibility
and to associate a proper time-stamp to each action instance. If the scheduling
succeeds, a valid temporal plan is constructed, otherwise the sequence of classical
action instances is refused and another must be found.

Most existing FSSTP planners are designed to operate on the PDDL 2.1
language. PDDL only allows effects at the start (sta) or at the end (eta) of an
action, instantaneous conditions can be specified at the start or at the end of the
action and durative conditions are possible only on the whole interval (sta, eta).
This coincides with the Ctrl-Extr problem class we defined in Section 4.

In FSSTP, each durative action a is expanded into a pair of classical plan-
ning actions called snap actions: ast encoding the starting event of a, and aet
corresponding to the ending of a. The action ast has the starting conditions and
effects of a as preconditions and effects, and, similarly, aet has the ending condi-
tions and effects of a as preconditions and effects. FSSTP planners like Colin
force the planner to instantiate snap actions in pairs (each start is coupled with
exactly one end) and forbid any action threatening the overall condition of a
between the snap actions for a [7].

Similarly, timed initial literals are treated as instantaneous actions that can
be instantiated without preconditions and have the TIL as effect. For a TIL t,
we indicate with TA(t) such an instantaneous action.

We can now define a Domain Abstraction as a classical planning problem
derived from a Ctrl-Extr STPUD planning instance.

Definition 11 (Domain Abstraction). Given a temporal planning problem P =
〈V, I,G, T,A〉 restricted to the Ctrl-Extr problem class, the abstraction of
P (written abs(P )) is a classical (non-temporal) planning problem defined as
〈V, I,G,

⋃
a∈A{ast , aet} ∪ {TA(t) | t ∈ T}〉.

The (highly simplified) pseudo-code of a forward state-space temporal plan-
ner (FSSTP) is shown in Algorithm 1. A classical planner (implemented as a
forward state-space search) is used as an iterator8 over all the valid plans of
the abstract problem abs(P ). The planner keeps a totally-ordered partial plan
χ composed of abstract action instances we call steps. We indicate a step cor-
responding to an instance of action a as sa. Each time an action instance is
added to the partial plan, the scheduling check is invoked to assess the temporal

8This behavior can be efficiently implemented in a forward state-space search planner by
keeping the open and closed sets between calls to avoid the need for plan blocking constraints.
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Algorithm 1 The FSSTP Approach

1: procedure FSSTP(P )
2: for all partial χ generated while solving abs(P ) do
3: D ← Durations(χ, P )
4: P ← Precedences(χ, P )
5: if TN.IsConsistent(〈χ,D ∪ P 〉) then
6: µ← TN.ConsistentSchedule(〈χ,D ∪ P 〉)
7: if IsComplete(χ) then
8: return BuildTemporalPlan(µ, χ)
9: else

10: continue( )

11: else
12: reject(χ)

13: return ⊥

consistency of the partial plan. The scheduling check builds a TN9 that has the
steps of χ as time points and has a set of constraints composed of duration con-
straints D and precedence constraints P . Duration constraints (created by the
Durations function) are used to bind pairs of snap action instances (s

ast
i , s

aet
j ),

forcing the duration of each action instance to obey the domain specification
(aet − ast ∈ [l, u], being a =̇ 〈[l, u], C,E〉). In addition, each TIL t =̇ 〈[k] f := v〉
is forced to happen at the predefined time by imposing a temporal constraint10

TA(t) = k. Precedence constraints (created by the Precedences function)
are used to maintain causality in the plan. If a step si is needed to achieve a
precondition for another step sj , we must impose a precedence among the two
steps (sj − si > 0), in order to inform the scheduler of the causal constraint11.
Similarly, precedence constraints are used to ensure that the overall conditions
for an action a are maintained.

When the TN is found to be consistent, two situations can occur. If χ is
a plan achieving the goal in abs(P ), each s

ast
i is followed by a corresponding

s
aet
j and all TILs appear in the plan (IsComplete returns true), we can ter-

minate the procedure, otherwise we continue the search in the abstract domain
(continue). To terminate, we build a temporal plan π from a consistent sched-
ule µ of the TN: we write µ(x) to indicate the value assigned to x by µ. Each
pair of snap actions steps s

ast
i , s

aet
j in χ is a step in π, the time for the step is

µ(s
ast
i ) and the duration is µ(s

aet
j )−µ(s

ast
i ). Instead, if the TN is not consistent,

the classical planner is required to generate a new plan, as χ is not temporally
sound and cannot be further extended.

9In this work, we only consider purely temporal planning. Other works cope with numeric
fluents and continuous effects by using linear programs instead of Temporal Networks [9].

10In practice, we introduce a reference time point z marking the beginning of time and we
impose a proper TN constraint TA(t)− z ∈ [k, k]

11In the PDDL 2.1 semantics, interfering steps must be separated by at least ε time; there-
fore, one would impose the constraint b− a ≥ ε.
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Algorithm 2 The S-FSSTP Approach

1: procedure S-FSSTP(P )
2: for all partial χ generated while solving abstract(P ) do
3: Xu ← UncontrollableSteps(χ, P )
4: Dc ← ControllableDurations(χ, P )
5: Du ← UncontrollableDurations(χ, P )
6: P ← Precedences(χ, P )
7: if TNU.IsStrongControllable(〈χ \Xu, Xu, Du, Dc ∪ P 〉) then
8: µ← TNU.StrongSchedule(〈χ \Xu, Xu, Du, Dc ∪ P 〉)
9: if IsComplete(χ) then

10: return BuildStrongPlan(µ, χ)
11: else
12: continue( )

13: else
14: reject(χ)

15: return ⊥

In the rest of this section, we use the following notation. Given a step si
of χ (that is an instance of a classical planning action), we write effects(si)
to indicate the set of its effects, each of the form 〈f := v〉. Moreover, we
write conditions(si) to indicate the set of preconditions of si, each in the form∨n
i=1 fi = vi.

5.2. S-FSSTP

The general idea we pursue is to substitute the scheduling steps of Algo-
rithm 1 to solve a strong controllability problem for a TNU instead of consis-
tency for a TN. The generalization of the framework to the STPUD case is
shown in Algorithm 2.

As in FSSTP, we first consider the abstract domain enumerating the “dis-
crete” plans that are a solution of the abstract problem. The key difference with
respect to the FSSTP schema is that to accommodate uncontrollable durations
we substitute the TN with a TNU (checking strong controllability instead of con-
sistency), and we consider different formulations for the precedence constraints.

Thanks to the limitation to the Unc-Extr class of problems, we can consider
all the time points corresponding to the starting of actions as controllable (the
planner decides if and when an action should be started), while ending time
points are controllable if the corresponding action is controllable, otherwise
they are uncontrollable.

The duration constraints are built analogously to the plain temporal case,
but are divided in two sets: Dc are the duration constraints for controllable
actions, Du are the ones for uncontrollable actions.

Building a strong plan σ from a strong schedule for the TNU is analogous to
the plain temporal planning case: each pair of corresponding 〈sasti , s

aet
j 〉 ∈ χ is a

step of σ, the time for the step is µ(s
ast
i ) and, if a is controllable, the duration is
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µ(s
aet
j )−µ(s

ast
j ). We do not set the duration for uncontrollable durative action

instances.
The encoding of the precedence constraints Precedences(χ, P ) is crucial,

because in the presence of uncontrollability not all the techniques presented in
the temporal planning literature for the controllable case [9, 8] are complete.
In the following, we consider two different encodings proposed in the temporal
planning literature and we show that they are incomplete for solving the STPUD
problem. Then, we borrow the idea of reordering from [6] and we derive the
first sound and complete approach for the STPUD problem in the Unc-Extr
class.

5.2.1. Total Order Encoding

A simple way of building the ordering constraints is to maintain the total
order (TO) of the partial plan χ. Forcing this total order clearly maintains
the causal soundness but, as noted in [8], is heavily dependent on the order of
action instances chosen by the classical planner. Nevertheless, this encoding
is complete for temporal planning without duration uncontrollability and is
adopted in the Colin [9] and Crikey 3 [7] planners.

We call PrecedencesTO(χ, P ) the set of precedence constraints for a given
totally ordered plan χ =̇ 〈s1, . . . , sn〉, and we define it as follows:

PrecedencesTO(χ, P ) =̇ {si < si+1 | i ∈ [1, n− 1]} .

We note that no disjunction is created, hence the encoding results in an STNU12.
Unfortunately, this encoding is incomplete in the presence of temporal uncer-
tainty. Indeed, at each step of Algorithm 2, it might be the case that no total
order produces a strongly controllable TNU, even if there exists a strong plan
for the given problem. Thus, the planner can explore the complete search space
and declare the problem unsolvable even if there exists a solution. Nonetheless,
the approach is sound: if a solution is returned, it is a valid strong plan.

In our running example, reported in Section 3.2, the TO approach can termi-
nate yielding the strong plan πex when the following abstract plan is generated
by the classical planner and the relative total order is considered.

χex =̇ 〈smovest1 , svisible:=T
2 , shot:=F

3 , s
moveet
4 , s

transst
5 , s

transet
6 , svisible:=F

7 〉

This very same example of an abstract plan that works for finding the plan πex
also works in the other approaches in this section.

As an example of the approach incompleteness, consider the situation de-
picted in Figure 4. Suppose that both actions a and b must be started at the
same time13. Action a is uncontrollable and b must end between the earli-
est and the latest possible ends of a. Literals p and q are initially true and

12Formally, strict inequalities are not expressible in STNU, but the techniques in [11] support
this extension. In a PDDL 2.1 context we can exploit the minimum quantum ε and rewrite
x > y as x+ ε ≥ y.

13We just need that the end of b is forced to overlap with the interval in which a can
uncontrollably end.
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a[5, 9]

q := T

p

b[7, 7]

q

p := T

Figure 4: Example problem for which the TO and LAD encodings cannot find a plan,
while a strong plan exists. The propositions p and q are both initially true, and if a
and b must start at the same time, b will end between the earliest and latest end times
for a.

no action falsifies them. Let us focus on the relative order of s
aet
i and s

bet
j .

If χ = 〈· · · , saeti , · · · , sbetj , · · ·〉, then we (transitively) impose the constraint

s
aet
i < s

bet
j . However, the resulting STNU is not strongly controllable because

if a takes longer than 7 time units, aet can happen after bet , violating the con-

straint. If χ = 〈· · · , sbetj , · · · , saeti , · · ·〉, then the situation is reversed and again
the STNU is not strongly controllable. Therefore, in both cases χ is rejected
and the planner returns ⊥. This is incomplete, because there exists a simple
strong plan for the problem: start both actions at time 0 (the two actions are
non-interfering and all the conditions are satisfied as p and q are never falsified).

5.2.2. Last Achiever Deordering Encoding

Another possible precedence encoding lifts totally ordered plans to partially
ordered plans [8]. The underlying idea is to use the greedy algorithm proposed
in [38] to reconstruct the causal links as precedence links. For each action
instance in the plan requiring a literal l as precondition, the algorithm searches
for the last achiever of that literal in the totally ordered plan, and imposes a
precedence link between the two action instances. In this way, it builds a partial
order plan as a deordering [6] of χ and possibly reduces the commitment on the
specific input ordering. Note that, similar to the previous encoding, we never
introduce disjunctions, hence the resulting TNU is an STNU14.

We now define the Last Achiever Deordering (LAD). Using a common trick
in partial order planning, we consider two fictitious steps, s0 and sn+1, repre-
senting the initial state and the goal condition, respectively. Step s0 has no
preconditions and has the initial state I as effect. Step sn+1 has the goal as
precondition and no effect.

Given a variable f and a value v, we denote with ach(f, v) the subset of
steps in χ that set the variable f to value v and with del(f, v) the set of action

14Compared to [8], we expanded the precedence constraints to cope with disjunctive condi-
tions in our language. In particular, we consider the last achiever of at least one disjunct of
any step and we ensure that the overall condition of each action is respected on at least one
disjunct.
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instances that set f to a value different from v. Formally, ach(f, v) is defined
as the set of steps {si ∈ χ|〈f := v〉 ∈ effects(si)} and del(f, v) as the set⋃
v′∈Dom(f),v′ 6=v ach(f, v′).

Given a step sk and a disjunctive condition c =̇
∨n
i=1 fi = vi, we denote with

last(c, sk) the step sj such that sj ∈
⋃n
i=1 ach(fi, vi) and j is the maximum

index strictly lower than k. Intuitively, last(c, sk) is the last action instance
that sets an fi to its desired value vi before sk in χ.

The precedence constraints PrecedencesLAD(χ, P ) of this approach are de-
fined as follows.

Definition 12. Given χ = 〈s0, · · · , sn+1〉, PrecedencesLAD(χ, P ) is as follows.

1. {(s0 < si), (si < sn+1) | i ∈ [1, n]} ⊆ PrecedencesLAD(χ, P ).

2. For each sak ∈ χ and for each c ∈ conditions(a), (last(c, sak) < sak) ∈
PrecedencesLAD(χ, P ).

3. For each s
ast
k ∈ χ and for each overall condition 〈(sta, eta)

∨n
i=1 fi = vi〉 of

action a, {(sj < s
ast
k ) | sj ∈

⋃n
i=1 del(fi, vi), j < k} ⊆ PrecedencesLAD(χ, P ).

4. For each s
aet
k ∈ χ and for each overall condition 〈(sta, eta)

∨n
i=1 fi = vi〉 of

action a, {(saetk < sj) | sj ∈
⋃n
i=1 del(fi, vi), k < j} ⊆ PrecedencesLAD(χ, P ).

For example, consider the following abstract plan for the running example
of Section 3.2.

χ2
ex =̇ 〈smovest1 , shot:=F

3 , s
moveet
4 , svisible:=T

2 , s
transst
5 , s

transet
6 , svisible:=F

7 〉

The abstract plan is the same as χex defined in the previous section, but we
shuffled the positions of svisible:=T

2 , shot:=F
3 and s

moveet
4 . For this abstract plan,

the Total Order approach would construct an STNU that is not strongly con-
trollable (nor Consistent) because the visible := T TIL must happen before the
hot := F one. However, there is no causal relation between the two TILs (they
operate on different variables) nor between the changes to the hot variable and
the starting of the trans action. In this sense, the algorithm in [38] would not
introduce a precedence requirement from shot:=F

3 to svisible:=T
2 , nor from s

moveet
4

to svisible:=T
2 ; leaving to the scheduler the task of finding a suitable order. In

this view, the example abstract plan would correctly generate the plan πex. In
Figure 5, we show the STNU produced by the LAD approach.

This encoding is able to find a plan in many situations even in the presence
of uncertainty, but it is not complete in general. For example, it fails on the
problem of Figure 4: the encoding greedily assumes that the last achiever is the
one that must be preserved in the form of a causal link; in reality there may be
other achievers that could be used instead. Just as in the previous case, if χ =

〈· · · , saeti , · · · , sbetj , · · ·〉, then we impose the constraint s
aet<bet
i because s

aet
i is

the last achiever of p (required by s
bet
j ). Instead, if χ = 〈· · · , sbetj , · · · , saeti , · · ·〉,

we impose the constraint s
bet
j < s

aet
i because s

bet
j is the last achiever of q (re-

quired by s
aet
i ).
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z s1 s4 s5 s6 s7

s3

s2

[15, 15]
[14, 14]

[30, 30]

[10, 15] [5, 8]

Figure 5: The STNU induced by the LAD approach on the χ2
ex abstract plan. Nodes

represent time points and edges are the constraints. In the picture, doubly circled
nodes are uncontrollable, dashed edges are contingent constraints and unlabeled edges
are precedence constraints (the implicit label would be [0,∞)). The resulting STNU
is strongly controllable, with πex being a valid strong schedule.

5.2.3. Disjunctive Reordering Encoding

In order to obtain sound and complete reasoning, we need to relax the to-
tal order produced by the state-space search, retaining the precedence con-
straints needed to ensure plan validity. However, we must be careful to not
over-constrain the TNU, otherwise we may discard valid plans. A solution is
to consider all the reorderings [6] of the given plan that are causally sound: we
build a set of (disjunctive) precedence constraints in such a way that all the
orderings fulfilling the constraints are causally sound. We call the approach
using these precedence constraints Disjunctive Reordering (DR) and formally
define it below. We show that, given a partial plan χ, using DR to construct
the precedences in Algorithm 2, yields a complete technique for STPUD.

Given a variable f , a value v and a pair of action instances a and r of χ, we
define the disjunctive temporal constraint ρ(f, v, a, r) as follows.

ρ(f, v, a, r) =̇ (a < r ∧
∧

si∈ach(f,v)\{a,r}

(si < a ∨ si > r))

Intuitively, for a condition c =̇ 〈f = v〉, if a is an achiever of c and r is a
step having c as precondition, ρ(f, v, a, r) holds if a was the last achiever of c
before r. We now define the precedence constraints induced by the DR approach,
indicated as PrecedencesDR(χ, P ). As before, s0 and sn+1, represent the initial
state and the goal condition, respectively.
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Definition 13. Given χ = 〈s0, · · · , sn+1〉, PrecedencesDR(χ, P ) is as follows.

1. {(s0 < si), (si < sn+1) | i ∈ [1, n]} ⊆ PrecedencesDR(χ, P ).

2. For each sak ∈ χ and for each
∨n
i=1 fi = vi ∈ conditions(a), the following

constraints belong to PrecedencesDR(χ, P ):

(a)
∨n
i=1

∨
sj∈ach(fi,vi)\{sak}

ρ(fi, vi, sj , s
a
k);

(b)
∨n
i=1(

∧
sj∈ach(fi,vi)

(ρ(fi, vi, sj , s
a
k)→

∧
st∈del(fi,vi)\{sak}

(st<sj∨st>sak))).

3. For each s
ast
k ∈ χ and its corresponding saetw ∈ χ and for each overall condi-

tion 〈(sta, eta)
∨n
i=1 fi = vi〉 of the action a,∨n

i=1

∧
sj∈

⋃n
i=1 del(fi,vi)

((sj < s
ast
k ) ∨ (sj > s

aet
w ).

Intuitively, constraint 2a says that at least one step sj having as effect one
of the disjuncts of the precondition of step sak occurs before sak. Constraint 2b
says that there is at least one precondition disjunct c =̇ 〈f = v〉 of action a
such that if sj is the last achiever for c, between sj and sak there must be no
action instance falsifying c. Overall conditions cannot be canceled between their
extremal time point markers (constraint 3).

The following theorem states that DR is sound and complete. We give the
full proof of the theorem in Appendix A.

Theorem 3 (DR Completeness). Given a STPUD problem P admitting a valid
strong plan σ, if DR is used, Algorithm 2 terminates with a valid strong plan.

The intuition is that in DR, the disjunctions encode all reorderings that are
causally sound in the form of a DTNU, allowing the scheduler to re-arrange the
action instances independently of the total ordering of χ. In fact, the precedence
constraints generated by this approach are independent of the order of the steps
in χ; practically χ is treated as a multi-set. Therefore, it is possible that this
approach will generate and reject the same DTNU multiple times. In principle,
it would be possible to cache these DTNUs and require that the underlying
plan enumeration avoid the same multi-set of actions directly, but we leave
these technical considerations and improvements for future work.

We note that the set of precedence constraints generated by the DR ap-
proach, conjoined with the duration constraints, yields a TNU that is not for-
mally a DTNU. This is because of the use of strict inequalities and negations
that are not expressible in the DTNU framework. However, if we take the PDDL
2.1 semantics, this is not a problem because this semantics prescribes that there
is always a minimal time quantum (called ε) that is required to separate two
steps: each constraint si > sj can then be rewritten as si − sj ≥ ε, and nega-
tions can be handled by reversing the inequalities (e.g. ¬(si > sj) is equivalent
to (si ≤ sj)). Therefore, we can encode these constraints as a proper DTNU.
Moreover, we remark that the strong controllability techniques presented in [11]
are applicable even in the presence of strict inequalities.

The strong controllability of a DTNU is an NP-Hard problem [5] (and the
same is true for the generalized DTNU with strict inequalities), thus the use

25



of this encoding is quite costly; however, DR is important as it overcomes the
incompleteness limitation of the other encodings.

6. Compiling STPUD into Temporal Planning

In this section, we present our compilation technique, which can be used to
reduce any planning instance P having duration uncertainty into a temporal
planning instance P ′ in which all actions have controllable durations. The
translation guarantees that P is solvable if and only if P ′ is solvable, and it
fully supports the Unc-Arbit problem class. Moreover, given any plan for P ′

we can derive a plan for P . This approach comes at the cost of duplicating some
of the variables in the domain, but allows for the use of off-the-shelf temporal
planners.

6.1. Formal Compilation

The intuition behind the translation is that we are representing the uncer-
tainty about duration as uncertainty about the values of variables during certain
action intervals. In practice, we use additional variables to encode in a single
execution all the possible uncertain executions of the STPUD. In a sense, this is
analogous to the expansion of a universal quantifier in logic: we make sure that
all the possible realizations of the quantified variable are satisfied by a single
model.

Consider for example the transmit (i.e., trans) action in our example, and
suppose it is scheduled to start at time k. Let v be the value of sent at time
k + 5; since transmit has an at-end effect 〈[ettrans] sent := T〉, we know that
the value of the variable sent during the interval (k + 5, k + 8] will be either
v or T depending on the duration of the action. After time k + 8 we are sure
that the effect took place, and we are sure of the value of sent until another
effect is applied15. Since in STPUD the plan cannot take advantage of observed
durations at run-time, we need to consider the uncertainty in the value of sent
and produce a plan that works for all the possible uncertain values. Since sent
could appear as a condition of another action (or as a goal condition, as in our
example) we must rewrite such conditions to be true only if the value of sent is
certain to be the required value, or if either value will satisfy the condition. To
achieve this, we create an additional variable sentσ (called the shadow variable
of sent). This secondary variable stores the alternative value of sent during
uncertainty periods. When there is no uncertainty in the value of sent, both
sent and sentσ will have the same value. In this way, all the conditions involving
sent can be rewritten in terms of sent and sentσ to ensure they are satisfied by
both the values.

15Note that there cannot be another concurrent action in the plan having an effect on sent
during the interval [k+ 5, k+ 8] because this would allow for the possibility of two concurrent
effects on the same variable, which is forbidden in our semantics.

26



In general, our translation rewrites a STPUD problem P =̇〈V, I, T,G,A〉 into
a new planning instance P ′ =̇ 〈V ′, I ′, T ′, G′, A′〉 that does not contain actions
with uncontrollable duration.

6.1.1. Uncertain Variables

The first step is to identify the set of variables L ⊆ V that appear as effects
of uncontrollable actions and are executed at a time depending on the end of
the action.

L =̇ {f | a ∈ Au, 〈[t] f := v〉 ∈ Ea, t = eta − δ}

Intuitively, this is the set of variables that can possibly have uncertain value
during plan execution. A variable that is modified only at times linked to the
start of actions or by timed initial literals cannot be uncertain: neither the
starting time of actions nor the timed initial literals can be uncertain in our
model. In our running example, the set L is the set {sent, pos}.

We now define the set V ′ as the original variables V plus a shadow variable
for each variable appearing in L.

V ′ =̇ V ∪ {fσ | f ∈ L}

We use the pair of variables f and fσ to represent uncertainty: if f = fσ we
know that there is no uncertainty in the value of f , while if f 6= fσ we know
that the actual value of f in the original problem is either f or fσ.

6.1.2. Disjunctive Conditions

At the end of Section 3, we outlined the reason why existing approaches for
compiling away disjunctive conditions will not work with uncontrollable action
durations. To rewrite a condition c =̇ 〈[(stc, etc)]

∨n
i=1 fi = vi〉 we need to ensure

that at each time in which the condition must hold, the set of disjuncts for at
least one variable fi in c is satisfied by the values of both fi and fiσ. When
there is only one disjunct fi = vi for the variable fi, this requires that both
fi and fiσ have the value vi. However, if c contains multiple disjuncts for a
variable fi, say fi = vi1∨fi = vi2, this condition will be satisfied whenever both
fi and fiσ have values in the set {vi1, vi2}. To accomplish this, we define an
auxiliary function θ(ψ) that takes a single disjunctive condition without timing
information and returns a set of untimed disjunctive conditions.

θ(ψ) =̇ θ(ψ,L)

with

θ(ψ,X) =̇

{
{ψ} if X = ∅
θ(ψ,X ′) ∪ {φ[f → fσ] | φ ∈ θ(ψ,X ′)} if X = {f} ∪X ′

where φ[f → fσ] indicates logical substitution of variable f with variable fσ in
formula φ.

Using this, the condition of the trans action, pos = l2, is translated as the
two conditions pos = l2 and posσ = l2. Analogously, assuming that both f
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and g are in L, a given condition (f = T) ∨ (g = F) in P is translated by
function θ as the set of conditions {(f = T) ∨ (g = F), (fσ = T) ∨ (g = F), (f =
T) ∨ (gσ = F), (fσ = T) ∨ (gσ = F)} in P ′. The intuition behind θ is as follows.
Semantically, a condition is satisfied at time t if the evaluation of the variables at
time t satisfies the condition. If some variables are uncertain, then the condition
must be satisfied by all the possible values of the variables at time t. In our
rewriting, we know that at each time the value of an uncertain variable f in
the original problem is uncertain between the value of f and the value of fσ in
the rewritten problem. So, we must ensure that a condition is valid for every
possible combination of both the f value and the fσ value, and θ produces a set
of conditions that exactly ensures this property.

6.1.3. Uncertain Temporal Intervals

We also need to identify the temporal interval in which the value of a given
variable can be uncertain. Given an action a with uncertain duration da in [l, u],
let λ(t) and ν(t) be the earliest and latest possible times at which an effect at
t =̇ eta′ − δ may happen, i.e. λ(t) =̇ sta′ + l − δ and ν(t) =̇ sta′ + u − δ. Both
functions are equal to sta′ + δ if t =̇ sta + δ.

For example, consider the effect e1 =̇〈[ettrans]sent := T〉 of action trans. We
know that the duration of transmit is uncertain in [5, 8], therefore the effect could
occur at any time between λ(ettrans) =̇ sttrans′ + 5 and ν(ettrans) =̇ sttrans′ + 8
and the sent variable has an uncertain value within that interval.

6.1.4. Uncontrollable Actions

For each uncontrollable action a=̇〈[l, u], Ca, Ea〉) in Au in the original model
we create a new action a′ =̇ 〈[u], Ca′ , Ea′〉 in A′c. Specifically, we first fix the
maximal duration u as the only allowed duration for a′ and then add appropriate
effects and conditions during the action to capture the uncertainty.

The effects Ea′ are partitioned in two sets Ela′ and Eua′ to capture possible
values within the uncertain action execution duration. The conditions Ca′ are
also composed of two elements: the rewritten conditions CRa′ and the conditions
added to protect the new effects CEa′ (thus Ca′ =̇ CRa′ ∪ CEa′).

Rewritten conditions CRa′ . Controllable conditions are compiled by rewriting
existing action conditions by means of the θ function. The intervals specifying
the duration of the conditions are preserved as they are written in the original
model. However, since the action duration is now set to its maximum, the
effective duration of conditions is “stretched” to match the maximal duration
(this is because temporal anchors such as sta and eta are interpreted over the
new maximal duration of the action).

CRa′ =̇ {〈[(λ(t1), ν(t2))] α〉 | α ∈ θ(ψ), 〈[(t1, t2)] ψ〉 ∈ Ca}

Here we keep the interval type: for example a [t1, t2) interval gets translated
into [λ(t1), ν(t2)).

For example, the set CRtrans′ for the trans action is: {〈[sttrans′ , sttrans′ +
8]pos = l2〉, 〈[sttrans′ , sttrans′ +8]posσ = l2〉, 〈[sttrans′ , sttrans′ +8]visible = T〉}.
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This requires variables visible, pos and posσ to be true throughout the execution
of trans′.

Compiling action effects. The effects on variables in L of the original action are
duplicated: both the affected variable f and its shadow fσ are modified, but at
different times. We first identify the earliest and latest possible times at which
an effect can happen due to the duration uncertainty. We then apply the effect
on fσ at the earliest time point λ(t), and at the latest time point ν(t) we re-align
f and fσ by also applying the effect on f :

Ela′ =̇ {〈[λ(t)] fσ := v〉 | 〈[t] f := v〉 ∈ Ea}

Eua′ =̇ {〈[ν(t)] f := v〉 | 〈[t] f := v〉 ∈ Ea}

For example, the trans action has Eltrans′ =̇ {〈[sttrans′ + 5] sentσ := T〉} and
Eutrans′ =̇ {〈[sttrans′ + 8] sent := T〉}.

Additional conditions CEa′ . Let t =̇ eta − δ be the time of an at-end effect that
affects the value of f . In order to prevent other actions from changing the value
of f during the interval (λ(t), ν(t)] where the value of f is uncertain, we add a
condition in CEa′ to maintain the value of fσ throughout the uncertain duration
(λ(t), ν(t)].

CEa′ =̇ {〈(λ(t), ν(t)] fσ = v〉, | 〈[t] f := v〉 ∈ Ea}

Since the effect on fσ (belonging to Ela′) is applied at time λ(t), the condi-
tion is satisfied immediately after the effect and we want to avoid concurrent
modifications of either f or fσ until the uncertainty interval ends at ν(t).16

For example, the trans action gets the added condition CEtrans′ =̇{〈(sttrans+
5, sttrans + 8] sentσ = T〉}. The compilation of the trans action is depicted in
Figure 6.

6.1.5. Controllable Actions

Controllable actions are much simpler. For each a =̇ 〈[l, u], Ca, Ea〉 ∈ Ac we
introduce a replacement action a′ =̇ 〈[l, u], Ca′ , Ea′〉 ∈ A′c, in which: (1) each
condition in C containing variables in L is rewritten to check the values of both
those variables and their shadows, and (2) each effect on a variable in L is
applied to the variable and its shadow.

Ca′ =̇ {〈[(t1, t2)] α〉 | α ∈ θ(ψ), 〈[(t1, t2)] ψ〉 ∈ Ca}

Ea′ =̇ Ea ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ Ea}

16Note that it is sufficient to include a preservation condition for fσ to ensure that neither f
nor fσ are modified during the uncertain interval. This is because every action that modifies
f also modifies fσ and has a similar preservation condition for fσ if the action has uncertain
duration. Any problematic overlap of another action that modifies f would therefore result in
the assignment to the shadow variable for one of the actions overlapping with the preservation
constraint of the shadow variable for the other action, which violates the semantics.
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transmit

at l2, visible

sent := T

transmit′

at l2, visible, at l2σ

sentσ

sentσ := T sent := T

Figure 6: Graphical view of the original transmit action (top) and its compilation
(bottom). Durative conditions are represented over the actions, while effects are re-
ported under each action. We indicate closed interval extremes with circles and open
ends with arrows. For example, the condition sentσ is open to the left and closed to
the right.

6.1.6. Initial State I

The initial state is handled by initializing variables and their corresponding
shadow variables in the same way as in the original problem.

I ′ =̇ I ∪ {fσ := v | f ∈ L, I(f) = v}

Intuitively, each initial condition on original variables is kept, and all shadow
variables are initialized exactly like the corresponding original variable.

For example, the initial state of our running problem is the original initial
state plus {sentσ = F, posσ = l1}.

6.1.7. Timed Initial Literals

Timed Initial Literals T ′ are set similarly to controllable effects.

T ′ =̇ T ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ T}

In our example, we do not have timed initial literals operating on uncertain
variables, thus T ′ =̇ T .

6.1.8. Goal Conditions

The goal conditions G are augmented to consider both the original and
shadow variables.

G′ =̇
⋃
g∈G

θ(g)

In our example, the set G′ becomes {(sent = T), (sentσ = T)}.
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6.2. Example

The compiled STPUD obtained by applying the compilation approach to
the rover running example is as follows.

V ′ =̇ V ∪ {posσ : {l1, l2}, sentσ : {T, F}}
I ′ =̇ I ∪ {posσ = l1, sentσ = F}
T ′ =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G′ =̇ {(sent = T), (sentσ = T)}
A′c =̇ {〈[15], Cmove′ , Emove′〉, 〈[8], Ctrans′ , Etrans′〉}

Cmove′ =̇ {〈[stmove] pos = l1〉, 〈[stmove] posσ = l1〉,
〈[etmove] hot = F〉, 〈(stmove + 10, stmove + 15] posσ = l2〉,

Ctrans′ =̇ {〈[sttrans, ettrans] pos = l2〉, 〈[sttrans, ettrans] posσ = l2〉,
〈[sttrans, ettrans] visible = T〉, 〈(sttrans + 5, sttrans + 8] sentσ = T〉,

Emove′ =̇ {〈[stmove + 10] posσ := l2〉, 〈[stmove + 15] pos := l2〉}
Etrans′ =̇ {〈[sttrans + 5] sentσ := T〉, 〈[sttrans + 8] sent := T〉}

6.3. Discussion

This compilation is sound and complete. Theorem 4 states that the original
problem is solvable if and only if the resulting problem is solvable.

Theorem 4 (Soundness and Completeness). Let P =̇ 〈V, I, T,G,A〉 be a plan-
ning instance and R =̇ 〈V ′, I ′, T ′, G′, A′〉 be its translation. P has a strong plan
π if and only if R has a temporal plan σ.

The proof we give in Appendix B is constructive and shows that any plan for
the rewritten temporal planning problem is automatically a strong plan for the
original problem (with the obvious mapping from the rewritten to the original
actions).

The compilation produces a problem that has: (i) at most twice the number
of variables of the original problem, (ii) at most twice the initial and timed
assignments and (iii) exactly the same number of actions. The only point in
which the compilation might produce exponentially large formulae is in the
application of the θ function, which is exponential in the number of disjuncts
constraining variables appearing in L. Since this only happens for disjunctive
conditions, and the number of disjuncts is typically small, this is normally not
a serious issue in practice.

Finally, we remark that any technique can be used to solve the compiled
temporal planning problem, and any valid plan corresponds to a strong plan.
Therefore, this technique allows for the mix of controllability and flexibility: if
we employ a planner that is able to produce flexible solutions (i.e. an STN
of possible solutions), all those solutions will be valid strong plans. This is an
example of flexible-strong planning.
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7. Worst-case Simplification

As we discussed in Section 3.4, it is in general impossible to solve the STPUD
problem by considering uncontrollable actions as taking either the maximal or
minimal duration of their duration interval: this motivated the development of
S-FSSTP and the compilation approaches we presented in Section 6. However,
under some specialized conditions, it is possible to soundly remove uncertainty
simply by fixing the duration of an action to its maximal or minimal duration.
In this section, we report a set of sufficient conditions that can be statically
checked on a planning instance to simplify the uncertainty of an uncontrollable
action.

7.1. Maximal-Duration Simplification

In order to soundly lengthen an uncontrollable action a =̇ 〈[l, u], C,E〉 to its
maximum duration u without changing its conditions or its effects, we need to
make sure that there are no other action conditions or effects (or TILs) that
could interfere with conditions or effects of the action a that are specified relative
to the end time of a. This means that any such threatening action conditions
or effects (or TILs) must be impossible during the time window when the end-
relative condition or effect might occur. For example, if a has duration in [l, u]
and has an end-relative effect 〈[eta − δ] f := v〉, no other action could have a
condition or effect on f that might occur within [l− δ, u− δ]. Likewise, no TIL
on f could occur within [l − δ, u− δ].

To make this more precise, let a′ be the extension of action a to its maximal
duration u. For this extension to be sound, we require:

1. For each end-relative effect 〈[eta′ − δ] f := v〉 of a′:

• no other action can have an effect on f or a condition containing f that
could occur within [l − δ, u− δ] of a′;

• no TIL on f can occur within [l − δ, u− δ] of a′.

2. For each end-relative condition 〈[eta′ − δ1, eta′ − δ2)] φ〉:

• no other action can have an effect on any variable appearing in φ or a
condition inconsistent with φ that could occur within [l− δ1, u− δ1) of a′;

• no TIL on any variable in φ can occur within [l − δ1, u− δ1) of a′.

3. For each end-relative condition 〈(eta′ − δ1, eta′ − δ2)] φ〉:

• no other action can have an effect on any variable appearing in φ or a
condition inconsistent with φ that could occur within (l− δ1, u− δ1] of a′;

• no TIL on any variable in φ can occur within (l − δ1, u− δ1] of a′,

Some notes are in order. First, the difference between cases (2) and (3)
above is whether the condition interval is closed or open on the left, which
determines whether the restriction needs to be open or closed on the right.
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Whether the condition interval is closed or open on the right does not affect
the requirements. Second, it might seem like the interval in condition (2) above
should be [l−δ1, u−δ2)] rather than the sub-interval [l−δ1, u−δ1). However the
extended action a′ still has the condition φ over the interval [eta′ − δ1, eta′ − δ2)]
and since a′s duration is u, the interval from [u − δ1, u − δ2)] is covered by the
new action. As a result, we only need to guard against a threat that might
occur within [l − δ1, u − δ2). Similarly for case (3). Finally, it might seem
that we also need to consider conditions of the form 〈[(sta + δ1, eta − δ2)] φ〉.
However, this is not needed because the condition for a′ is still over the interval
[(sta′ + δ1, eta′ − δ2)] which covers the required interval. This also applies to
overall conditions since the extended action a′ still has an overall condition that
covers the maximum possible duration of the original action a.

While the above criteria are fairly general, they are difficult to apply. In
particular, showing that some condition or effect of another action cannot oc-
cur within some specific subinterval of action a′ may require computationally
complex reasoning about the ways in which the actions can overlap. A more
restrictive, but more practical set of conditions is:

1. For each end-relative effect 〈[eta′ − δ] f := v〉 of a′:

• no other action b with an effect on f or a condition containing f can overlap
with a′;

• there are no TILs on f .

2. For each end-relative condition 〈[(eta′ − δ1, eta − δ2)] φ〉 of a′:

• no other action with an effect on any variable appearing in φ or a condition
inconsistent with φ can overlap with a′;

• there are no TILs on any variable in φ.

An action b cannot overlap with action a′ if any of the following hold:

• b has an overall condition inconsistent with an overall condition of a′;

• b cannot start during a′ and a′ cannot start during b. This holds if a start
condition or effect of b is incompatible with an overall condition of a′ and a
start condition or effect of a′ is incompatible with an overall condition of b;

• b cannot end during a′ and a′ cannot end during b. This holds if an end
condition or effect of b is incompatible with an overall condition of a′ and an
end condition or effect of a′ is incompatible with an overall condition of b.

Two conditions are incompatible if they are logically inconsistent. An effect
〈f := v〉 is incompatible with a condition φ if φ contains f . Two effects 〈f1 := v1〉
and 〈f2 := v2〉 are incompatible if f1 = f2.

These conditions can be checked syntactically for the actions in a domain,
making this easy and efficient to implement.
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7.1.1. Example

To clarify the rules for this simplification, let us consider the running exam-
ple of Section 3.2. We show how the transmit action in the example can be
simplified by considering its maximal duration, while the move action cannot
be simplified.

The transmit action has only one effect: 〈[ettrans] sent := T〉 and no other
action nor TIL can change the sent variable. Moreover, no action has a condition
that depends on sent, hence general condition (1) is satisfied. Finally, general
conditions (2) and (3) are trivially satisfied because the transmit action has no
ending conditions. Therefore, all the conditions are satisfied and the example
problem can be simplified as follows.

V =̇ {pos : {l1, l2}, visible : {T, F}, hot : {T, F}, sent : {T, F}}
I =̇ {pos = l1, visible = F, sent = F, hot = T}
T =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G =̇ {(sent = T)}
Ac =̇ {〈[8], Ctrans, Etrans〉}
Au =̇ {〈[10, 15], Cmove, Emove〉}

Cmove =̇ {〈[stmove] pos = l1〉, 〈[etmove] hot = F〉}
Ctrans =̇ {〈[sttrans, ettrans] pos = l2〉, 〈[sttrans, ettrans] visible = T〉}
Emove =̇ {〈[etmove] pos := l2〉}
Etrans =̇ {〈[ettrans] sent := T〉}

The resulting simplified problem now has one uncontrollable action and one
controllable action, without any additional variables or conditions. Moreover,
each plan for the resulting problem corresponds to a strong plan for the original
problem (with the obvious removal of durations for the simplified actions in the
plan).

Let us now consider the move action. In this case, condition (2) is violated,
because the TIL 〈[15] hot := F〉 affects the variable hot that appears in the
condition 〈[etmove] hot = F〉. In fact, a plan starting the move action at time
1 would be valid in the simplified problem, but it does not yield a strong plan
because the uncontrollable action move could end at time 11 and the ending
condition 〈[etmove] hot = F〉 would be unsatisfied. For this reason, the move
action cannot be simplified to its maximal duration.

7.2. Minimal-Duration Simplification

In order to soundly shorten an uncontrollable action a =̇ 〈[l, u], C,E〉 to
its minimum duration l, we need to make sure that there are no other action
conditions or effects (or TILs) that could interfere with conditions or effects of
the action a that are specified relative to the end time of a. This means that
any such threatening action conditions or effects (or TILs) cannot occur during
the time window when the end-relative condition or effect might actually occur
if a takes more time than the minimum. For example, if a has duration in [l, u]
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and has an end-relative effect 〈[eta − δ] f := v〉, no other action could have a
condition or effect on f that might occur within [l− δ, u− δ]. Likewise, no TIL
on f could occur within [l − δ, u− δ].

To make this more precise, let a′ be the shortening of action a to its minimum
duration l. For this simplification to be sound, we require:

1. For each end-relative effect 〈[eta′ − δ] f := v〉 of a′:

• no other action can have an effect on f or a condition containing f that
could occur within [l − δ, u− δ] of a′;

• no TIL on f can occur within [l − δ, u− δ] of a′.

2. For each end-relative condition 〈[(t, eta′ − δ2] φ〉:

• no other action can have an effect on any variable appearing in φ or a
condition inconsistent with φ that could occur within (l− δ2, u− δ2] of a′;

• no TIL on any variable in φ can occur within (l − δ2, u− δ2] of a′.

3. For each end-relative condition 〈[(t, eta′ − δ2) φ〉:

• no other action can have an effect on any variable appearing in φ or a
condition inconsistent with φ that could occur within [l− δ2, u− δ2) of a′;

• no TIL on any variable in φ can occur within [l − δ2, u− δ2) of a′.

Again, some notes are in order, similar to those for the maximal duration
simplification case. First, the difference between cases (2) and (3) above is
whether the condition interval is closed or open on the right, which determines
whether the restriction needs to be open or closed on the left. Whether the
condition interval is closed or open on the left does not affect the requirements.
Likewise, whether the start of the condition interval is relative to the start or end
of the action does not matter. Second, it might seem like the interval in condition
(2) above should be [(t, u−δ2] rather than the sub-interval (l−δ2, u−δ2]. However
the shortened action a′ still has the condition φ over the interval [(t, eta′ − δ2]
and since a′s duration is l, the interval from [(t, l − δ2] is covered by the new
action. As a result, we only need to guard against a threat that might occur
within (l − δ2, u − δ2]. Similarly for case (3). Finally, the intervals mentioned
in the above requirements often extend beyond the duration of the action a′.
For example, if action a has an end effect 〈[eta] f := v〉 and is shortened to its
minimum duration, the safety interval [l, u] starts at the end of the shortened
action a′.

7.2.1. Example

As an example, consider the classical match-fusebox example. An action a
lights a match producing the light needed to change a fuse by an action b as
illustrated in Figure 7. Suppose that the duration of a is uncertain in [10, 15]
(because different matches burn differently), and suppose that b has an overall
condition of having light (hence b must be contained in a). In this simple
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light-match

light := T light := F

change-fuse

light

Figure 7: A simple fuse-changing example. The change-fuse action must fit inside the
light-match action to ensure success. Shortening light-match to its minimum duration
is fine in this case.

light-match

light := T light := F

change-fuse(fuse1)

light

light-match

light := T light := F

change-fuse(fuse2)

light

Figure 8: A double fuse-changing example. This plan is not sound because the second
light-match action should not take place before the first is guaranteed to finish.

scenario, a can be simplified to its minimal duration because there are no other
actions with threatening effects, and the only threatening condition is the overall
condition of b, but it cannot happen during [10, 15] because b is now forced to
occur within the shortened action a′, hence b must start after the start of a′

and must end before the end of a′ at time sta′ + 10.
The catch here is that we need to ensure that the light-match action a′ can

only happen once. If a′ ends at time t + 10 and we were to execute a second
light-match a′2 at time t+ 12, it’s possible that the end-effect light := false of
a′, could actually happen at the same time as the start-effect light := true of
a′2, violating the semantics (which prohibits simultaneous effects on a variable).
In this case, the second light-match action a′2 would be violating condition (1)
above. If there were two fuses to change, and a single match is only sufficient
for changing one fuse, the minimum duration simplification is problematic. If
we used the shortened light-match action, we might think that the plan shown
in Figure 8 is valid. However, the first light-match could end after the second
light-match starts, resulting in light := false during the second change-fuse
action. It might seem that this could be fixed by a more sophisticated modeling
of light as a metric quantity that is increased at the beginning of light-match,
and decreased at the end of light-match. However, even with this modeling, we
would have to show that there is no upper bound on the amount of light that
can occur, or that the maximum number of possible overlapping light-match
actions cannot possibly exceed this bound. We would also need to show that no
other possible action (like developing film) depends on the light being below a
certain level. All of this illustrates the sophistication of the reasoning that may
be required to shorten an action to its minimum duration.
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7.3. Discussion

The conditions we listed above are sufficient to soundly simplify away un-
controllable durations to either the maximal or minimal duration.

The lengthening conditions are much easier to satisfy than the conditions
for shortening an action to its minimum duration. The reason for this is that
the lengthening process extends overall conditions of an action a, which tends
to prevent bad things from happening during [l, u]. In contrast, the conditions
for shortening an action are much harder to satisfy because they impose some
outside-of-action requirements that are rarely met in practice, or are much more
difficult to prove. A common source of problems for the minimum duration
simplification is when the action being shortened can appear more than once in
a plan, because such actions often interfere with themselves.

8. Experimental evaluation

We now empirically evaluate the approaches and simplifications we pre-
sented. First we discuss the experimental set-up, then we explain how to use
PDDL 2.1 planners for dealing with the compilation output, and finally we
discuss the results.

8.1. Experimental Set-Up

In order to enable the specification of durative actions with uncontrollable
durations, we extended the PDDL 2.1 planning language syntax with the addi-
tion of the keyword uncontrollable-durative-action: the construct is anal-
ogous to the usual durative-action construct, but marks the action as uncon-
trollable. We refer to this extension of the language as PDDL-U.

For testing, we adopted the temporal planning domains from the temporal
track of the International Planning Competition in 2011 [39]: these domains
are written in the PDDL 2.1 language. We modified them by making some
actions uncontrollable, enlarging the duration intervals of actions, and created
several versions of each domain. The resulting benchmark set is composed of
a total of 901 planning problem instances. Since both the compilation and the
simplification techniques manipulate the domain specifications and automated
planners are quite sensitive to the input, we implemented a tool that randomly
“scrambles” PDDL input problems. The tool always generates a problem in-
stance that is logically equivalent to the original one, but it changes the order
of actions, conditions and effects in the concrete specification. Using this tool,
we performed each experiment 5 times (with different random seeds to obtain
different “scramblings”), considering each run as a separate experiment. Thus,
we are left with a virtual benchmark set of 4505 planning instances. We chose
this approach because we realized that minimal variations in the ordering of
actions or in the ordering of the conditions within an action produced very dif-
ferent performance. This sensitivity issue is highlighted in several papers in the
literature [40]; we use this scrambling augmentation procedure to limit the bias
due to sensitivity to the syntactic ordering in the problem.
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PDDLU
Instance

Maximal-Duration
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Simplified
PDDLU
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(DR / LAD / TO)

Compiler
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Compiled
PDDL 2.1
Instance

Colin

Plan

Figure 9: Block diagram representation of the implemented tools for the experimental
evaluation.

We implemented the direct approaches for the Unc-Extr problem class
(described in Section 5) as an extension of the Colin planner [9]. The parser
and the internal structures of Colin were modified to support the processing
of this extension. We added three new schedulers to Colin, each implementing
one of the defined encodings. The temporal solvers for strong controllability
were implemented in C++, following the approach presented in [11], using the
MathSAT [41] SMT solver as workhorse. Finally, the heuristic for the forward
search planner was left unchanged.
In the following, we write TO to refer to the encoding based on Total Ordering,
LAD for the Last Achiever Deordering and DR for the Disjunctive Reordering.

The compilation described in Section 6 was implemented as a Java trans-
lator that takes as input a PDDL-U specification and produces a plain PDDL
2.1 temporal planning problem. The formal translation is designed to generate
a Ctrl-Arbit problem even when starting from an Unc-Extr instance. For
this reason, the translator is equipped with a technique to remove intermediate
effects and conditions resulting in a PDDL 2.1 description. We discuss this
technique in detail in Section 8.2. Since the direct approaches have been imple-
mented using a modification of the Colin planner, we also used Colin to solve
the temporal planning instances produced by the compilation.

Finally, the maximal-duration simplification has been implemented as a Java
re-writer that takes as input a PDDL-U instance and produces a simplified
PDDL-U specification. We note that in some cases the simplifier is able to
remove all the temporal uncertainty from the problem and, thanks to the way
PDDL-U is defined, a plain PDDL 2.1 planning problem is produced by the
simplifier. In these experiments we did not attempt to use the minimal-duration
simplification.

The implemented tools and the possible data-flows are depicted in Figure 9.
All the experiments were executed on a Scientific Linux 64 bit, 12 core Intel

Xeon at 2.67GHz, with 96GB RAM. We used a timeout of 10 minutes, and a
memory limit of 8GB.
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All the tools and the benchmark set can be downloaded from http://es.

fbk.eu/people/amicheli/resources/aij-stpud.

8.2. Dealing with Intermediate Effects and Conditions

Given a PDDL-U planning instance, the compilation described in Section 6
produces an instance having no uncontrollable durations, but with intermediate
effects and conditions. In particular, for the Unc-Extr case that is expressible
by PDDL-U, the algorithm introduces an intermediate effect and a durative
condition for each uncontrollable action. Unfortunately, the PDDL 2.1 language
does not support these features natively. Therefore, we need to get rid of these
characteristics before being able to use PDDL 2.1 planners on the result of our
compilation.

In the following we assume a PDDL semantics: we require a minimum time
quantum called ε forcing each pair of time points in the plan to be separated by
at least ε time.

The papers [42, 34, 31] present some ideas on how to encode intermediate
events in PDDL 2.1. In particular, [34] assumes actions have a fixed dura-
tion and proposes some “standard” constructs to encode several features as
polynomial transformations of the PDDL domain. The work in [31] uses the
construction in [42] to develop a more general translation from ANML to PDDL.

The clip-action construction described in [34] allows one to force two or more
time points (either the start or the end of actions) to happen simultaneously or
to be separated by exactly ε. The construction uses one additional action with
duration 2ε (or 3ε in case an ε separation is required). Each time point pi being
clipped requires a special effect 〈fpi := T〉 where fpi is a fresh Boolean variable.
The clip action for clipping the points {p1, · · · , pn} is defined as follows.

clip =̇ 〈[2ε], Cclip, Eclip〉
Cclip =̇ {〈(stclip, etclip) fs = T〉} ∪ {〈[etclip] fpi = T〉 | i ∈ [1, n]}
Eclip =̇ {〈[stclip] fs := T〉, 〈[etclip] fs := F〉} ∪ {〈[etclip] fpi := F〉 | i ∈ [1, n]}

Intuitively the clip is an action that sets a fresh, dummy variable fs to true
when it starts and resets it upon termination. We can now clip time points
to impose the condition fs = T exactly at those time points. Since no two
events can happen with distance lower than ε, the clip guarantees simultaneous
execution. If the time points being clipped have mutually-exclusive effects, we
need a clip of duration 3ε to achieve an ε separation of the two time points.
The special effects on the fpi variables are needed to prevent a clip from being
instantiated without clipping all the needed time points.

Figure 10 shows an example of the construction for the action τ ′ derived
from the running example action τ by means of the uncertainty compilation.

This construction can be used to encode intermediate effects and conditions
by splitting an action duration in pieces, one for each sub-interval of the action
duration delimited by an intermediate effect or condition bound. This tech-
nique works perfectly for fixed duration actions (note that this is enough for the
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time0 5 85− ε 5 + ε

transmit′

at l2, visible, at l2σ

sentσ

sentσ := T sent := T

Ctrl-Arbit

trans′s

trans′e

c

fs := T

fe := T, sentσ := T fs ∧ fe

at l2, visible, at l2σ fc

(sentσ], at l2,
visible, at l2σfc

sent := T

fc := T fc, fs, fe := F

fc

Ctrl-Extr

Figure 10: Clip action construction example: the action trans′ derived from the
running example action trans by means of the compilation is rewritten as an equivalent
triplet of actions. The condition fc that is the basis of the construction is imposed at
time 5 at the end of the action trans′s and at the begin of the action trans′e; moreover
it is an overall condition of the clip action c. The literals fs and fe are required
to ensure that the clip cannot be instantiated without clipping the two actions. For
space reasons, we indicated the condition 〈(5, 8] sentσ = T〉 together with the other
conditions in the interval [5, 8].

outcome of the translation as each uncontrollable action is compiled as a fixed-
duration action and no other intermediate effects or conditions are artificially
added).

The clip action is not the only construction that can be used to encode
intermediate effects and conditions. A second relevant technique [42, 31] uses a
container action that spans the whole duration of the original action and exactly
contains a number of sub-actions, one for each sub-interval. This paradigm is
depicted in Figure 11.

Both these techniques have significant overhead: to remove an intermediate
effect or condition, a single action is replaced with three actions, increasing the
plan length; moreover, additional variables are added to the problem description
to support the construction, widening the search space.

We improved these two classical constructions by developing a modification
to guide the planners and limit this overhead. The fundamental observation is
that both these encodings are designed in such a way that when the first action
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time0 5 85− ε 8− εε

transmit′

at l2, visible, at l2σ

sentσ

sentσ := T sent := T

Ctrl-Arbit

trans′s

trans′e

c

f1
c

f1
c := F

f2
c := T

f2
c , (sentσ]

sentσ := T f2
c := F

f3
c := T

f1
c := T sent := T

f3
c := F

at l2, visible, at l2σ f3
c

Ctrl-Extr

Figure 11: Container action construction example: the action trans′ derived from
the running example action trans by means of the compilation is rewritten as an
equivalent triplet of actions.

of the construction is started (the first piece in the clip action construction and
the container in the other), the planner has no choice but to instantiate the rest
of the construction. However, nothing is telling the planner to avoid useless
search on branches where the structure has not been correctly instantiated. We
can exploit the PDDL 2.1 features to force the planner into the correct choice:
we call the resulting technique “exclusion literal simplification”.

We start by describing the idea on the clip-action construction. Suppose we
are clipping two actions a and b with a clip c. We introduce a fresh Boolean
variable fec that is initially true and is falsified during the execution of the clip
c with appropriate start and end effects. Then, fec becomes a condition for
starting and terminating each action in the problem except for the clip c and
the two clipped actions a and b. Moreover fec is a condition for starting a and
for terminating b. In this way, once c is inserted in the plan, the search has
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no choice but to immediately start b, because no other successor is possible
given that b is the only action that can be started during c. This additional
construction is applied for every clip-action in the instance to prune the search
in all the cases.

The same idea can also be applied to the container construction by imposing
mutual exclusion on the “holes” within the container action to force the planner
to immediately expand the next action in the sequence. All these techniques
have been implemented as a post-processing of the compilation result and are
evaluated in the following sections.

8.3. Overall Results

In the following, Colin-Clip refers to the compilation approach solved with
the Colin planner using the clip technique to remove intermediate effects.
Colin-Clip-MuxLiterals indicates the same but with the addition of mu-
tual exclusion literals to guide the solver. Similarly, Colin-Container and
Colin-Container-MuxLiterals refer to the compilation techniques using
the container construction to remove intermediate effects. The S-FSSTP tech-
niques are referred to as S-FSSTP-TO, S-FSSTP-LAD and S-FSSTP-DR,
for the TO, LAD and DR techniques, respectively.

Figure 12 gives an overview of the performance of the presented techniques
in our experiments. First, we consider the direct approach obtained extending
the FSSTP planning framework. We note how the LAD approach performs
much better than the TO approach, which in turn performs better than the
DR approach. In fact, LAD is able to solve almost twice as many instances as
DR. However, both the LAD and TO techniques are not complete in general:
it might be the case that a problem is reported as unsolvable when a strong
plan exists. This situation never occurred in our experiments: in each instance
the planner either returned a valid strong plan or did not terminate within the
allowed time limit.

For the compilation technique, we note how the performance dramatically
depends on the technique used to compile away intermediate effects and con-
ditions. The clip construction proved to be more effective than the container
construction. Moreover, both the techniques benefit from the mutual exclusion
improvement.

In order to compare the compilation technique with the direct approach,
we report in Figure 13 the result of the best-performing compilation technique
with the two native approaches. The results are mixed with no clear winner.
This means that the two techniques exhibit a complementary behavior: on
some instances the direct approach is vastly superior, on others it is beaten
by the compilation. This is confirmed by the performance of the Virtual Best
Solver (VBS) in Figure 12: the performance of the VBS is obtained by taking
the results of the fastest solver for each instance. The VBS line in the plot
solves far more instances than any actual solver; hence, the various solvers that
contribute to the VBS are able to solve different sets of instances.

42



0 500 1000 1500 2000

Number of solved instances

T
im

e 
(s

ec
)

0.1

1

10

50

100

300

600

Colin−Container
Colin−Container−MuxLiterals
Colin−Clip
Colin−Clip−MuxLiterals
S−FSSTP−DR
S−FSSTP−LAD
S−FSSTP−TO
VBS

Figure 12: Log-scale cactus plot showing the performance of the solvers. The “VBS”
line is the Virtual Best Solver that is computed taking for each instance the perfor-
mance of the fastest solver among all the others.

We analyzed several features of the instances without finding a clear cor-
relation with the better solver. We leave the use of automated data mining
techniques for the best solver prediction as future work.

8.3.1. Impact of Worst-Case Simplification

We implemented the simplifier following the maximal-duration simplifica-
tion described in Section 7. Since the simplification requires a mutual exclusion
generator, we provided a simple generator based on syntactic rules. Moreover,
to strengthen the mutual exclusion predicate we manually checked for all the
domains that all the uncontrollable actions were mutually exclusive with them-
selves, and we forced this information in the mutual-exclusion generator.

The pseudo-code of the generator is reported in Algorithm 3. The mutual
exclusion rules are purely syntactic and only exploit the overall condition of
the actions. The entry function MaxDurationSimplifiable returns > if the
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Figure 13: Scatter plot comparing the best technique for solving the compilation
approach with the complete DR method (a) and the incomplete LAD method (b). Axes
indicate run-time in seconds, each point represents the comparison of time required by
the two solvers being compared. The points at the top and right edges are problems
where one technique could solve the problem in the allotted time, but the other could
not.

given action a can be simplified to its maximal duration. The function Con-
flictingActions returns the set of actions that have a condition or an effect
conflicting with an ending effect of the given uncontrollable action. CheckMu-
texAssume implements the policy we described: all action are mutually ex-
clusive with themselves. Finally, CheckMutex performs the syntactic check:
in the code StartConditions, OverallConditions, and EndConditions
return the set of starting, overall and ending conditions, respectively. Moreover,
StartEffects and EndEffects return the set of starting and ending effects
for the given action.

We note that the generator is sound but incomplete: if two actions are
marked as mutually exclusive, they are, but it might be the case that two
actions are mutually exclusive but the generator fails to recognize this. This is
acceptable in our framework, because if an uncontrollable action is not mutually
exclusive with all the actions threatening its ending effects or conditions, the
simplification is not applied and a sound and complete technique for dealing
with uncertainty is used.

We ran the benchmark tests with the simplification used as a pre-processor
for all the techniques: the results are reported in Figures 14 and 15. We dif-
ferentiate a technique from its version in which simplification is applied as pre-
processing by adding a “+ Simp” to the technique name.

The simplification turns out to be useful in all the cases but the LAD and
TO approaches where it has virtually no effect. This is because there is little
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Algorithm 3 Syntactic simplification procedure: an action a ∈ Au can be
simplified by fixing its maximal duration if MaxDurationSimplifiable(a)
returns >. In the pseudocode, we distinguished the syntactic mutual exclusion
checking (CheckMutex) from the chek that ssumes that an action is mutually
exclusive with itself (CheckMutexAssume) that we used in the experiments.

1: procedure CheckMutex(a, b)
2: if ∃c1 ∈ OverallConditions(a).∃c2 ∈ OverallConditions(b).c1 ∧ c2 |= ⊥ then
3: return >
4: if (∃c1 ∈ OverallConditions(a).∃c2 ∈ StartConditions(b).c1 ∧ c2 |= ⊥) ∧

(∃c1 ∈ OverallConditions(b).∃c2 ∈ StartConditions(a).c1 ∧ c2 |= ⊥) then
5: return >
6: if (∃c1 ∈ OverallConditions(a).∃c2 ∈ EndConditions(b).c1 ∧ c2 |= ⊥) ∧

(∃c1 ∈ OverallConditions(b).∃c2 ∈ EndConditions(a).c1 ∧ c2 |= ⊥) then
7: return >
8: if (∃c1 ∈ OverallConditions(a).∃c2 ∈ StartEffects(b).c1 ∧ c2 |= ⊥) ∧

(∃c1 ∈ OverallConditions(b).∃c2 ∈ StartEffects(a).c1 ∧ c2 |= ⊥) then
9: return >

10: if (∃c1 ∈ OverallConditions(a).∃c2 ∈ EndEffects(b).c1 ∧ c2 |= ⊥) ∧
(∃c1 ∈ OverallConditions(b).∃c2 ∈ EndEffects(a).c1 ∧ c2 |= ⊥) then

11: return >
12: return ⊥

13: procedure CheckMutexAssume(a, b)
14: if a = b then
15: return >
16: else
17: return CheckMutex(a, b)

18: procedure MaxDurationSimplifiable(a)
19: for all b ∈ ConflictingActions(a) do
20: if ¬ CheckMutexAssume(a, b) then
21: return ⊥
22: return >

overhead in solving an STNU with a DTNU solver. The simplification tech-
nique removes some of the uncertainty, but only changes some time points from
uncontrollable to controllable while keeping the same constraint structure.

On the other hand, the simplification is very beneficial for the compilation
approaches: this is because of two factors. First, converting a single uncon-
trollable action from an instance results in a reduction of the plan length in
the compiled domain. In fact, each uncontrollable action gets translated into
three controllable actions in the compilation. Second, all the additional vari-
ables needed for the intermediate effect construction of an uncontrollable action
are removed if the action is simplified as controllable.

In order to show the impact of the simplification on the solvers, we show
a scatter plot of the DR and Colin-Clip-MuxLiterals approaches with and
without the simplification pre-processing step (Figure 16). The plots highlights
that the simplification is either beneficial or neutral with very few detrimental
cases.

We also analyzed in detail the performance of the best-performing solvers for
the compilation and direct approaches, all with the addition of simplification.
We show the scatter plots in Figure 17. As before, there is evident complemen-
tary behavior for the two approaches.
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Figure 14: Log-scale cactus plot showing the impact of simplification in our experi-
ments on the FSSTP techniques. The red arrows highlight the impact of simplification
by linking a solver without simplification pre-processing with the corresponding pre-
processed solver.

Finally, Figure 18 shows a comparison of the performance of all the solvers
with the simplification enabled. The VBS + Simp line is calculated by taking,
for each instance, the best performing solver among the others shown in the
plot. Comparing this plot with Figure 12, it is evident that the simplification
technique is very effective for the compilation approaches, which are now able
to beat the native techniques. Moreover, we still see that the virtual best solver
is far more effective than any other technique; hence, there is still a strong
partitioning of the instances in terms of the best solving technique. This plot
also shows that taking a portfolio approach with the simplification, we can solve
more instances than without the simplification. In fact, while the VBS solver
is able to solve a total of 2052 instances, the VBS + Simp solver can handle
2597 instances within the timeout.
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Figure 15: Log-scale cactus plot showing the impact of simplification in our experi-
ments on the compilation approach. The red arrows highlight the impact of simplifi-
cation by linking a solver without simplification pre-processing with the corresponding
pre-processed solver.

9. Conclusions and Future Work

In this paper we introduced the Strong Temporal Planning with Uncontrol-
lable Durations (STPUD) problem, which extends Temporal Planning to deal
with actions having uncontrollable duration. We search for temporally strong
solutions, i.e. plans that are guaranteed to achieve the goal regardless of the
actual duration of the actions that are under the control of the execution envi-
ronment.

We presented two complementary approaches. The first one is based on the
integration of a “classical” temporal planner with a solver for temporal net-
works with uncertainty. The second approach reduces any STPUD problem to
a “classical” temporal planning problem, where the actions have controllable
durations. Finally, we proposed a technique that is able to eliminate some of
the uncontrollable durations by reasoning in terms of worst case execution. We
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Figure 16: Impact of simplification on the DR and the Colin-Clip-MuxLiterals
techniques: the scatters compare each technique with and without the simplification
pre-processing on the whole benchmark set. Axes indicate run-time in seconds, each
point represents the comparison of time required by the two solvers being compared.
The points at the top and right edges are problems where one technique could solve
the problem in the allotted time, but the other could not.
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Figure 17: Comparison of DR and LAD approach with the Colin-Clip-MuxLiterals
approach when pre-processing simplification is applied. Axes indicate run-time in
seconds, each point represents the comparison of time required by the two solvers being
compared. The points at the top and right edges are problems where one technique
could solve the problem in the allotted time, but the other could not.
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Figure 18: Log-scale cactus plot showing a comparison of the different techniques
with simplification pre-processing enabled.

implemented and experimentally evaluated the approaches. The results demon-
strate the complementarity of the two planning methods, and of the effectiveness
of the proposed optimizations.

This work is a first step in a more comprehensive research effort on real-
wold planning with durative actions. The target is a richer domain description
language based on ANML [31], extended with uncertain durations, uncertain
resource usage, and uncontrollable effects, all of which allow more natural rep-
resentation of real-world domains and overcome the many limitations of PDDL.
In particular, several directions can be explored.

First, some interesting features, such as timed initial literals with uncon-
trollable time windows and conditional effects, are not included in the abstract
language used in this paper because they are not fundamental to explain the
characteristics of the approach. Timed initial literals have been modeled as
fixed-time effects that happen exogenously in every plan, but we can allow TILs
having a time window in which they can controllably or uncontrollably occur.
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Such a feature could be useful to model unpredictable events and can be eas-
ily handled in our framework by considering each TIL as the end effect of an
action (controllable or uncontrollable) that must be started at time 0. In this
view, both the approaches we presented can be extended to deal with non-
fixed or even uncontrollable TILs. Conditional effects are another useful feature
that can be included in our language. Unlike uncertainty in TILs, this feature
requires more adaptation in order to be included in our framework. The compi-
lation approach we presented is based on the assumption that at each point in
time while executing a plan, each variable can be either certain, meaning that
we know the exact value, or uncertain between exactly two values. Moreover,
we know that outside of uncertainty intervals, all the variables are certain. The
introduction of conditional effects changes this situation: if a conditional effect
with a condition on variable f takes place while f is uncertain, the outcome of
the effect is uncertain. This uncertainty is not removed at the end of the uncer-
tainty intervals and multiple conditional effects can increase the cardinality of
the set of possible uncertain values. One possible idea to deal with this problem
is to extend our compilation to allow a bounded number of uncertain values for
each variable, so that we can accommodate a finite number of uncertain effect
occurrences. This approach would maintain the soundness of the compilation,
but sacrifice completeness.

Another interesting question is whether a compilation approach can be de-
veloped to handle (uncertain) resource usage. In this paper we do not consider
resources, but they are important in many planning applications. Resources
can be uncertain due to different factors. Either the production or consumption
of a resource depends on the duration of some uncontrollable action (E.g. the
amount of fuel consumed in a trip depends on its duration, which is uncontrol-
lable because of uncontrollable traffic conditions), or the amount being added
or removed for a resource is uncertain by itself (E.g. the amount of energy
produced by a solar panel depends on uncontrollable weather conditions). One
idea to extend our work in this direction is to encode the resource profile with
the upper and lower bounds and modifying conditions accordingly. This com-
pilation would probably be sound but incomplete, but more research is needed
to fully understand the issues.

In terms of planning problems, another challenge is to deal with the ability
of the executor to observe the end of actions with uncontrollable duration. This
amounts to lifting to the level of planning the TNU notion of dynamic control-
lability. We would like to produce plans that are able to change their course of
action based on the duration of activities observed at run-time. Notice that in
STPUD the start of actions is decided a-priori, and plans must achieve the goal
“blindly” (which is the planning counterpart of strong controllability in TNU).

On the experimental side, we would like to better understand the impact of
the intermediate effect constructions (such as clip-actions) by modifying a PDDL
temporal planner to natively understand such constructions. Another direction
we would like to pursue is to study the compilation technique performance using
a native ANML planner.

Finally, we intend to study the plan- and domain-validation problems for
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the case of STPUD, by using techniques based on formal verification. In fact,
validating a plan when uncertainty is present is no trivial task, and so is the de-
velopment of domain models for complex applications. We want to investigate
automated techniques that can help domain experts in the creation and debug-
ging of planning models to foster the applicability of the planning technologies
presented in this paper.
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Appendix A. Proof of Theorem 3

In this section we prove Theorem 3.

Lemma 1. Given a strong plan σ, let χ =
⋃
s∈σ snap(action(s)). σ is valid

for a STPUD if and only if the DTNU K created by algorithm 2 with DR is
strongly controllable.

Proof. Clearly, K is defined over all and only the snap actions of the action
appearing in σ.

First, we prove that if σ is valid, then K is strongly controllable. Let µ be
the assignment to the controllable time points of K, defined as follows.

µ(x) =

{
t(x) if x = ast for some a

t(ast + δ(a)) if x = aet for some controllable a

We now prove that µ is a strong schedule for K. For the sake of contradiction,
suppose it is not. Then, there exists a duration for the uncontrollable actions
for which one of the free constraints in K is violated. It is impossible to violate
a duration constraint, therefore one of the three constraints in Definition 13
must be violated for some ā. This is impossible, because σ is a valid plan and if
we violate constraint 2a or constraint 2b, it means that the preconditions of the
action in σ corresponding to ā are unsatisfied, if we violate constraint 3, then
the overall conditions of the action in σ corresponding to ā are unsatisfied.

Now, we prove that if K is strongly controllable, σ is valid. Reversing the
argument before, we assume we have a strong schedule µ for K, and prove that
setting each step s of σ as follows, yields a valid strong plan.

• t(s) = µ(ast)

• δ(s) = µ(aet − µ(ast), if s is controllable.

where ax indicates the snap-actions for the action s. For the sake of contra-
diction, assume that σ defined as above is not a valid strong plan. Then there
exists a temporal plan π ∈ Iσ that is not a valid plan for the domain in which
we removed temporal uncertainty as per Definition 9. If π is invalid, it is either
causally unsound (inapplicable in the initial state, not simulable, not leading
to the goal state) or it violates some temporal constraint of the domain. But
π cannot be causally unsound, because it fulfills all the constraints of Defini-
tion 13; and it cannot violate a temporal constraint, because the only temporal
constraints in the plan are the durations of actions that are encoded in K and
fulfilled by µ.

The proof of Theorem 3 follows directly from Lemma 1.

Theorem 3 (DR Completeness). Given a STPUD problem P admitting a valid
strong plan σ, if DR is used, Algorithm 2 terminates with a valid strong plan.

55



Proof. We assume that the classical planner employed in Algorithm 2 is sound
and complete. Therefore, sooner or later it will produce the abstract plan
χ =

⋃
s∈σ snap(action(s)) as it is a plan achieving the goal abs(P ). Then,

by Lemma 1, we know that the DR approach yields a strongly controllable
DTNU, and therefore the algorithm terminates with a valid strong plan.

Appendix B. Proof of Theorem 4

In this appendix we prove Theorem 4.

Appendix B.1. Plan Mapping

Consider a plan σ for R, with actions ai at time ti and having duration di.
We call πσ the regression plan for P when it has actions aπi corresponding to
the actions ai in σ such that:

• aπi also starts at time ti.

• aπi has duration di if ai is controllable,

• otherwise the duration of aπi is unspecified.

Analogously, we call σπ the projection plan for R of a strong plan π for P ob-
tained by fixing the duration of each uncontrollable action in π to its maximum.

Appendix B.2. Plan Execution

Given a temporal plan, an execution εX of a temporal planning instance X, is
a set of changes applied to the variables in time: ε=̇{(t1, f1, v1), · · · (tn, fn, vn)}.

An element (ti, fi, vi) ∈ εX means that at time ti the variable fi takes value
vi. Analogously to ANML, we take the view that at time ti the change is not
yet visible: the value vi is taken immediately after ti. Such an element of εX

can be caused by either: (1) an initial condition (i.e. ti = 0); (2) by a Timed
Initial Literal or (3) by an action effect. Therefore, for the rest of this proof we
refer to execution elements as either initial conditions, timed initial literals or
action effects. Moreover, εX(f, t) represents the value v of f at time t during
the execution εX .

Given a strong plan π for P , we have a set of possible executions, one for
each possible duration of each uncontrollable action in π. For a given execution
εP , then εP (f, t) indicates the value of variable f at time t during this particular
execution εP .

We now need to compare the executions of plans for P and R. The next
theorem states that if σ is a valid plan for R and its corresponding regression
plan for R is πσ, then the variables in each pair of executions are aligned at
each time in which fσ is equal to f during the execution of R.
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Lemma 2. Given a valid plan σ for R and its corresponding regression plan
πσ, for each execution εP of πσ: if εR(fσ, t) = εR(f, t), then εR(f, t) = εP (f, t),
for each variable f ∈ L and each t ∈ R≥0.

Proof. For the sake of contradiction, let us focus on an execution εP in which
there is t ∈ R≥0 such that εR(fσ, t) = εR(f, t) but εR(f, t) 6= εP (f, t).

Let ERfσ =̇ (tRσ , fσ, v
R
σ ), ERf =̇ (tR, f, vR) and EPf =̇ (tP , f, vP ) be the latest

execution elements involving fσ and f in εR and εP . By our hypothesis, vR 6=
vP . Moreover, due to the translation constraints, we know that vRσ = vR and
tRσ ≤ tR. In fact, each time we change f in R we also change fσ either at the
same time or at the beginning of an uncertain interval d and we prevent any
other change on fσ until d is over.

We prove that this hypothesis is impossible by considering all possible cases.

1. ERf and EPf are both initial conditions: since all the initial conditions are

copied from P to R, we must have vP = vR.

2. ERf and EPf are both timed initial literals (TIL): since all TILs are copied

from P to R, either vP = vR or there are two TILs at the same time on the
variable f , which is not allowed.

3. ERf is either a TIL or an initial condition and EPf is the effect of action a:

• If a is uncontrollable, there is a TIL (tR, f, vR) also in P corresponding to
ERf . Since by hypothesis EPf is the last effect on f in P , we have tR < tP .

However, since EPf is an uncontrollable effect, there is an effect on f in
R corresponding to the maximal duration of a. We indicate the time of
such an effect with t∗ and we know that tP ≤ t∗ because t∗ is set to the
maximal duration of a that starts at the same time in both εP and εR.
Now, t∗ must also be strictly smaller than tR, because ERf is the last effect

on f , so we have that tP ≤ t∗ < tR and tR < tP , which is a contradiction.

• If a is controllable, then there should be an effect corresponding to EPf for

R at time tP . Therefore, either ERf or EPf is not the latest effect modifying
f in the executions of R and P , respectively.

4. EPf is either a TIL or an initial condition and ERf is an action effect: since

TIL are copied from P to R, there is a TIL analogous to EPf in R. Hence tR ≥
tRσ > tP . However, since tR and tRσ are the two extremes of an uncertainty
interval, there must be another effect on f in P during this interval. Hence,
EPf is not the last effect changing f in P .

5. EPf and ERf are both effects of two action instances a and a′; there are four
possible sub-cases:

• Both EPf and ERf are effects of controllable actions (or effects of uncon-
trollable actions that happen at times independent of the duration): they
must be the same effect since the controllable actions in P are kept in R
without changing the duration nor the effect times.
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• Both ERf and EPf are effects of uncontrollable actions: ERf and EPf must be
the same effect of the same uncontrollable action, because of the condition
imposed on fσ. If this were not the case, then the condition preserving the
value of fσ for the whole uncertainty interval would have been violated in
εR.

• ERf is an effect of a controllable action (or effect of an uncontrollable action

happens at a time independent of the uncertain duration) while EPf comes

from an uncontrollable action. Since EPf is an uncontrollable effect, there
is a corresponding pair of effects on f and fσ for the execution in R. If
tR > tP then there would be an effect on f equivalent to ERf that happens

after tP but before t. If EPf happens after ERf , then either εR(fσ, t) 6=
εR(f, t) or EPf is not the latest effect on f .

• EPf is an effect of a controllable action (or effect of an uncontrollable action

happens at a time independent of the uncertain duration) while ERf comes
from an uncontrollable action. This is analogous to the previous case.

Lemma 3. Given a strong plan π for P and its corresponding projection plan
σπ for R, let εR be the execution of σπ. For each variable f ∈ L, each t ∈ R≥0

and each execution of P : if εR(fσ, t) = εR(f, t) then εR(f, t) = εP (f, t),

Proof. We apply the same reasoning as in the proof of the previous lemma.
Cases 1 and 2 are identical to the previous proof, the other cases are changed
as follows.

3. ERf is either a TIL or an initial condition and EPf is the effect of an action a.

• If a is uncontrollable, there should be a TIL (tR, f, vR) in P corresponding
to ERf . Given that EPf is an action effect, there is an execution of P where

tP happens before tR and another in which it happens after (no two effects
of the same action on the same variable can happen at the same time).
Hence, π is not a valid strong plan.

• If a is controllable, then there is an effect corresponding to EPf and also for

R at time tP , therefore either ERf or EPf is not the latest effect modifying
f in the executions of R and P .

4. EPf is either a TIL or an initial condition and ERf is an action effect. Since

TILs are copied from P to R, there must be a TIL analogous to EPf in R.

Hence tR ≥ tRσ > tP . But there are two executions of P in which tR = tP

and tRσ = tP (tR and tRσ are the extremes of an uncertainty interval). Hence,
EPf is not the last effect changing f in P .

5. EPf and ERf are both effects of two action instances a and a′.

Four sub-cases are possible:
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• Both EPf and ERf are effects of controllable actions (or effects of uncon-
trollable actions that happen at times independent of the uncertain action
duration): they must be the same effect, as the controllable actions in P
are all kept in R without changing the duration or the effect times.

• Both ERf and EPf are effects of uncontrollable actions: ERf and EPf must
be the same effect of the same uncontrollable action, because actions are
started at the same time in the two executions and no pair of effects on
the same variable are allowed if the plan is strong.

• ERf is an effect of a controllable action (or happens at a time independent

of the duration) while EPf comes from an uncontrollable action. Since ERf
is an uncontrollable effect, there is an original effect in P that is concurrent
with EPf . If tR > tP then there would be an effect on f equivalent to ERf
after tP and before t. If EPf happens after ERf , then either εR(fσ, t) 6=
εR(f, t) or EPf is not the latest effect on f .

• EPf is an effect of a controllable action (or happens at a time independent

of the duration) while ERf comes from an uncontrollable action. This is
analogous to the previous case.

Theorem 4 (Soundness and Completeness). Let P =̇ 〈V, I, T,G,A〉 be a plan-
ning instance and R =̇ 〈V ′, I ′, T ′, G′, A′〉 be its translation. P has a strong plan
π if and only if R has a temporal plan σ.

Proof. Let π be a strong plan for P . σπ is a valid temporal plan for R because:

• It achieves the goal G′ of R, because all the original goals in G are achieved
by π and by σ in the same way, and the goals on the shadow variables must
be achieved because π is a strong plan. In fact, π achieves the goals regardless
of the concrete durations of the actions, therefore it achieves them outside of
the uncertainty intervals, where the variables and the shadow variables are
aligned because of Lemma 3.

• Each action a′ is executable in R, because each a ∈ π is executable in P
regardless of the action durations. Thus the possible uncertainty introduced
by the durations is irrelevant for the executability of a (all the conditions
are satisfied and variables and the shadow variables are aligned because of
Lemma 3). In the translated instance R, all the conditions are also satisfied
because the conditions are imposed via the χ function that only checks that
both the variable and its shadow fulfill the original condition.

• No conflicting effects are possible because of the conditions added in CEa′
that prevents any modification of the interested shadow variables during the
uncertainty intervals.

Similarly, let σ be a plan for R. Then πσ is a valid strong temporal plan for
P because:
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• It achieves the goal G, because σ achieves the goal G′ that is a super-set of
G, and the variables are aligned because of Lemma 2.

• Each action a is executable in P regardless of the action duration, because the
variables are aligned because of Lemma 2, a′ ∈ σ is executable in R and the
conditions in the translated actions are a super-set of the ones in the original
action, because of the χ function.

• No conflicting effects are possible regardless of the uncertain duration, because
each effect at time t can be uncertain only between λ(t) and ν(t) and we
guarantee no other effect is possible in that interval by means of CEa′ .
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